pH-Insensitive Polymeric Particles for Enhanced Oil Recovery in Reservoirs With Fractures

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 34-47 ◽  
Author(s):  
Krishna Panthi ◽  
Kishore K. Mohanty

Summary Many carbonate reservoirs have natural fractures that reduce the sweep efficiency of displacement processes. The goal of this study is to improve oil recovery by reducing fluid bypassing caused by fractures, especially in carbon dioxide (CO2) floods. The pH-insensitive polymeric particles (PIPPs) synthesized in this study can plug fractures in reservoir rocks and divert fluid flow into the rock matrix. PIPPs swell in brine similar to polymeric particle gels (PPGs) published in literature; the swelling is a function of brine salinity. A PIPP expands many times (≈35 times) in deionized (DI) water, but swells only approximately 3 times in very-high-salinity (20 wt% NaCl) brine. The swelling of the particles is independent of pH in the range of 2 to 12. The swelling process is reversible with salinity. In water without divalent cations, these particles are stable at 80°C for at least a month. Coreflood results show that these small particles can be transported through fractures during high-salinity-brine injection and reduce the flow capacity of the fractures during low-salinity-brine injection. Subsequently, the injection fluid (brine, toluene, or CO2) is diverted into the matrix, and recovers oil from previously unswept matrix. PIPP injection increases waterflood recovery in cores with full fractures and half fractures connected to the inlet. PIPP placement also increases oil recovery for tertiary miscible/CO2 floods.

SPE Journal ◽  
2013 ◽  
Vol 19 (02) ◽  
pp. 249-259 ◽  
Author(s):  
Yunshen Chen ◽  
Amro S. Elhag ◽  
Benjamin M. Poon ◽  
Leyu Cui ◽  
Kun Ma ◽  
...  

Summary To improve sweep efficiency for carbon dioxide (CO2) enhanced oil recovery (EOR) up to 120°C in the presence of high-salinity brine (182 g/L NaCl), novel CO2/water (C/W) foams have been formed with surfactants composed of ethoxylated amine headgroups with cocoalkyl tails. These surfactants are switchable from the nonionic (unprotonated amine) state in dry CO2 to cationic (protonated amine) in the presence of an aqueous phase with a pH less than 6. The high hydrophilicity in the protonated cationic state was evident in the high cloudpoint temperature up to 120°C. The high cloud point facilitated the stabilization of lamellae between bubbles in CO2/water foams. In the nonionic form, the surfactant was soluble in CO2 at 120°C and 3,300 psia at a concentration of 0.2% (w/w). C/W foams were produced by injecting the surfactant into either the CO2 phase or the brine phase, which indicated good contact between phases for transport of surfactant to the interface. Solubility of the surfactant in CO2 and a favorable C/W partition coefficient are beneficial for transport of surfactant with CO2-flow pathways in the reservoir to minimize viscous fingering and gravity override. The ethoxylated cocoamine with two ethylene oxide (EO) groups was shown to stabilize C/W foams in a 30-darcy sandpack with NaCl concentrations up to 182 g/L at 120°C and 3,400 psia, and foam qualities from 50 to 95%. The foam produces an apparent viscosity of 6.2 cp in the sandpack and 6.3 cp in a 762-μm-inner-diameter capillary tube (downstream of the sandpack) in contrast with values well below 1 cp without surfactant present. Moreover, the cationic headgroup reduces the adsorption of ethoxylated alkyl amines on calcite, which is also positively charged in the presence of CO2 dissolved in brine. The surfactant partition coefficients (0 to 0.04) favored the water phase over the oil phase, which is beneficial for minimizing losses of surfactant to the oil phase for efficient surfactant usage. Furthermore, the surfactant was used to form C/W foams, without forming stable/viscous oil/water (O/W) emulsions. This selectivity is desirable for mobility control whereby CO2 will have low mobility in regions in which oil is not present and high contact with oil at the displacement front. In summary, the switchable ethoxylated alkyl amine surfactants provide both high cloudpoints in brine and high interfacial activities of ionic surfactants in water for foam generation, as well as significant solubilities in CO2 in the nonionic dry state for surfactant injection.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2822-2840 ◽  
Author(s):  
Pengfei Dong ◽  
Maura C. Puerto ◽  
Kun Ma ◽  
Khalid Mateen ◽  
Guangwei Ren ◽  
...  

Summary Oil recovery in many carbonate reservoirs is challenging because of unfavorable conditions, such as oil–wet surface wettability, high reservoir heterogeneity, and high brine salinity. We present the feasibility and injection–strategy investigation of ultralow–interfacial–tension (IFT) foam in a high–temperature (greater than 80°C), ultrahigh–formation–salinity [greater than 23% total dissolved solids (TDS)] fractured oil–wet carbonate reservoir. Because a salinity gradient is generated between injection seawater (SW) (4.2% TDS) and formation brine (FB) (23% TDS), a frontal–dilution map was created to simulate frontal–displacement processes and thereafter it was used to optimize surfactant formulations. IFT measurements and bulk–foam tests were also conducted to study the salinity–gradient effect on the performance of ultralow–IFT foam. Ultralow–IFT foam–injection strategies were investigated through a series of coreflood experiments in both homogeneous and fractured oil–wet core systems with initial oil/brine two–phase saturation. The representative fractured system included a well–defined fracture by splitting the core sample lengthwise. A controllable initial oil/brine saturation in the matrix can be achieved by closing the fracture with a rubber sheet at high confining pressure. The surfactant formulation achieved ultralow IFT (magnitude of 10−2 to 10−3 mN/m) with the crude oil at the displacement front and good foamability at underoptimal conditions. Both ultralow–IFT and foamability properties were found to be sensitive to the salinity gradient. Ultralow–IFT foam flooding achieved more than 50% incremental oil recovery compared with waterflooding in fractured oil–wet systems because of the selective diversion of ultralow–IFT foam. This effect resulted in a crossflow near the foam front, with surfactant solution (or weak foam) primarily diverted from the fracture into the matrix before the foam front, and oil/high–salinity brine flowing back to the fracture ahead of the front. The crossflow of oil/high–salinity brine from the matrix to the fracture was found to create challenges for foam propagation in the fractured system by forming Winsor II conditions near the foam front and hence killing the existing foam. It is important to note that Winsor II conditions should be avoided in the ultralow–IFT foam process to ensure good foam propagation and high oil–recovery efficiency. Results in this work contributed to demonstrating the technical feasibility of ultralow–IFT foam in high–temperature, ultrahigh–salinity fractured oil–wet carbonate reservoirs and investigated the injection strategy to enhance the low–IFT foam performance. The ultralow–IFT formulation helped to mobilize the residual oil for better displacement efficiency and reduce the unfavorable capillary entry pressure for better sweep efficiency. The selective diversion of foam makes it a good candidate for a mobility–control agent in a fractured system for better sweep efficiency.


2013 ◽  
Vol 807-809 ◽  
pp. 2607-2611
Author(s):  
Byung In Choi ◽  
Moon Sik Jeong ◽  
Kun Sang Lee

Water salinity and hardness have been regarded as main limitation for field application of polymer floods. It causes not only reduction of polymer concentration, but also injectivity loss in the near wellbore. Based on the mathematical and chemical theory, extensive numerical simulations were conducted to investigate performance of polymer floods in the high-salinity reservoirs. According to results from simulations, the high salinity reduces the viscosity of polymer in contacting area. That causes a poor sweep efficiency of polymer flooding. Moreover, the presence of divalent cations makes the project of polymer flooding worse. That is because of excessively increased bottom-hole pressure in injection well by the precipitation of polymer. The quantitative assessment of polymer floods needs to be required before field application. Therefore, the results in this paper are helpful for optimal polymer flooding design under harsh reservoir conditions.


SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1871-1883
Author(s):  
Mohamad Salman ◽  
Konstantinos Kostarelos ◽  
Pushpesh Sharma ◽  
Jae Ho Lee

Summary Unconventional plays pose a challenging set of operational conditions, including high temperature, high salinity, low permeability, and fracture networks. Aggressive development of these plays and the low primary recovery factors present an opportunity for using enhanced oil recovery (EOR) methods. This work presents a laboratory investigation of miscible ethane (C2H6) foam for gas EOR conformance in low-permeability, heterogeneous, harsh environments [<15 md, 136,000 ppm total dissolved solids (TDS) with divalent ions, 165°F]. The use of C2H6 as an alternative to carbon dioxide (CO2) offers several operational and availability strengths, which might expand gas EOR applications to depleted or shallower wells. Coupling gas conformance also helps improve displacement efficiencies and maximize overall recovery. Minimum miscibility pressure (MMP) displacement tests were performed for dead crude oil from the Wolfcamp Spraberry Trend area using C2H6 and CO2. Aqueous stability, salinity scan, and static foam tests were performed to identify a formulation. Subsequent foam quality and coreflood displacement tests in heterogeneous carbonate outcrop cores were conducted to compare the recovery efficiencies of three processes: gravity-unstable, miscible C2H6 foam; gravity-stable, miscible C2H6; and gravity-unstable, miscible C2H6 processes. Slimtube tests comparing C2H6 to CO2 resulted in a lower MMP value for C2H6. We identified a stable surfactant blend capable of Type I microemulsion and persistent foams in the presence of oil. Corefloods conducted with gravity-unstable miscible C2H6 foam, gravity-stable miscible C2H6, and gravity-unstable miscible C2H6 recovered 98.4, 61.9, and 42.6% oil originally in place, respectively. Our work shows that miscible C2H6 injection processes achieved significant recoveries even under gravity-unstable conditions. The addition of foam provides better conformance control, enhancing overall recovery at the laboratory scale, showing promise for field applications.


SPE Journal ◽  
2020 ◽  
pp. 1-17
Author(s):  
Yang Zhao ◽  
Shize Yin ◽  
Randall S. Seright ◽  
Samson Ning ◽  
Yin Zhang ◽  
...  

Summary Combining low-salinity-water (LSW) and polymer flooding was proposed to unlock the tremendous heavy-oil resources on the Alaska North Slope (ANS). The synergy of LSW and polymer flooding was demonstrated through coreflooding experiments at various conditions. The results indicate that the high-salinity polymer (HSP) (salinity = 27,500 ppm) requires nearly two-thirds more polymer than the low-salinity polymer (LSP) (salinity = 2,500 ppm) to achieve the target viscosity at the condition of this study. Additional oil was recovered from LSW flooding after extensive high-salinity-water (HSW) flooding [3 to 9% of original oil in place (OOIP)]. LSW flooding performed in secondary mode achieved higher recovery than that in tertiary mode. Also, the occurrence of water breakthrough can be delayed in the LSW flooding compared with the HSW flooding. Strikingly, after extensive LSW flooding and HSP flooding, incremental oil recovery (approximately 8% of OOIP) was still achieved by LSP flooding with the same viscosity as the HSP. The pH increase of the effluent during LSW/LSP flooding was significantly greater than that during HSW/HSP flooding, indicating the presence of the low-salinity effect (LSE). The residual-oil-saturation (Sor) reduction induced by the LSE in the area unswept during the LSW flooding (mainly smaller pores) would contribute to the increased oil recovery. LSP flooding performed directly after waterflooding recovered more incremental oil (approximately 10% of OOIP) compared with HSP flooding performed in the same scheme. Apart from the improved sweep efficiency by polymer, the low-salinity-induced Sor reduction also would contribute to the increased oil recovery by the LSP. A nearly 2-year pilot test in the Milne Point Field on the ANS has shown impressive success of the proposed hybrid enhanced-oil-recovery (EOR) process: water-cut reduction (70 to less than 15%), increasing oil rate, and no polymer breakthrough so far. This work has demonstrated the remarkable economical and technical benefits of combining LSW and polymer flooding in enhancing heavy-oil recovery.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1151-1163 ◽  
Author(s):  
Leyu Cui ◽  
Kun Ma ◽  
Maura Puerto ◽  
Ahmed A. Abdala ◽  
Ivan Tanakov ◽  
...  

Summary The low viscosity and density of carbon dioxide (CO2) usually result in the poor sweep efficiency in CO2-flooding processes, especially in heterogeneous formations. Foam is a promising method to control the mobility and thus reduce the CO2 bypass because of the gravity override and heterogeneity of formations. A switchable surfactant, Ethomeen C12, has been reported as an effective CO2-foaming agent in a sandpack with low adsorption on pure-carbonate minerals. Here, the low mobility of Ethomeen C12/CO2 foam at high temperature (120 °C), high pressure (3,400 psi), and high salinity [22 wt% of total dissolved solids (TDS)] was demonstrated in Silurian dolomite cores and in a wide range of foam qualities. The influence of various parameters, including aqueous solubility, thermal and chemical stability, flow rate, foam quality, salinity, temperature, and minimum-pressure gradient (MPG), on CO2 foam was discussed. A local-equilibrium foam model, the dry-out foam model, was used to fit the experimental data for reservoir simulation.


SPE Journal ◽  
2009 ◽  
Vol 15 (01) ◽  
pp. 184-196 ◽  
Author(s):  
Adam K. Flaaten ◽  
Quoc P Nguyen ◽  
Jieyuan Zhang ◽  
Hourshad Mohammadi ◽  
Gary A. Pope

Summary Alkaline/surfactant/polymer (ASP) flooding using conventional alkali requires soft water. However, soft water is not always available, and softening hard brines may be very costly or infeasible in many cases depending on the location, the brine composition, and other factors. For instance, conventional ASP uses sodium carbonate to reduce the adsorption of the surfactant and generate soap in-situ by reacting with acidic crude oils; however, calcium carbonate precipitates unless the brine is soft. A form of borax known as metaborate has been found to sequester divalent cations such as Ca++ and prevent precipitation. This approach has been combined with the screening and selection of surfactant formulations that will perform well with brines having high salinity and hardness. We demonstrate this approach by combining high-performance, low-cost surfactants with cosurfactants that tolerate high salinity and hardness and with metaborate that can tolerate hardness as well. Chemical formulations containing surfactants and alkali in hard brine were screened for performance and tolerance using microemulsion phase-behavior experiments and crude at reservoir temperature. A formulation was found that, with an optimum salinity of 120,000 ppm total dissolved solids (TDS), 6,600 ppm divalent cations, performed well in corefloods with high oil recovery and almost zero final chemical flood residual oil saturation. Additionally, chemical formulations containing sodium metaborate and hard brine gave nearly 100% oil recovery with no indication of precipitate formation. Metaborate chemistry was incorporated into a mechanistic, compositional chemical flooding simulator, and the simulator was then used to model the corefloods. Overall, novel ASP with metaborate performed comparably to conventional ASP using sodium carbonate in soft water, demonstrating advancements in ASP adaptation to hard, saline reservoirs without the need for soft brine, which increases the number of oil reservoirs that are candidates for enhanced oil recovery using ASP flooding.


Author(s):  
Amin Abolhasanzadeh ◽  
Ali Reza Khaz’ali ◽  
Rohallah Hashemi ◽  
Mohammadhadi Jazini

Without Enhanced Oil Recovery (EOR) operations, the final recovery factor of most hydrocarbon reservoirs would be limited. However, EOR can be an expensive task, especially for methods involving gas injection. On the other hand, aqueous injection in fractured reservoirs with small oil-wet or mixed-wet matrices will not be beneficial if the rock wettability is not changed effectively. In the current research, an unpracticed fabrication method was implemented to build natively oil-wet, fractured micromodels. Then, the efficiency of microbial flooding in the micromodels, as a low-cost EOR method, is investigated using a new-found bacteria, Bacillus persicus. Bacillus persicus improves the sweep efficiency via reduction of water/oil IFT and oil viscosity, in-situ gas production, and wettability alteration mechanisms. In our experiments, the microbial flooding technique extracted 65% of matrix oil, while no oil was produced from the matrix system by water or surfactant flooding.


2014 ◽  
Author(s):  
W.. Li ◽  
D. S. Schechter

Abstract Carbon dioxide (CO2) has been used commercially to recover oil from reservoirs by enhanced oil recovery (EOR) technologies for over 40 years. Currently, CO2 flooding is the second most applied EOR processes in the world behind steamflooding. Water alternating gas (WAG) injection has been a popular method to control mobility and improve volumetric sweep efficiency for CO2 flooding. The average improved recovery is about 9.7%, with a range of 6 to 20% for miscible WAG injection. Despite all the success of WAG injection, sweep efficiency during CO2 flooding is typically a challenge to reach higher oil recovery and better apply the technology. This paper proposes a new combination method called polymer alternating gas (PAG) to improve the volumetric sweep efficiency of the WAG process. The feature of this new method is that polymers are added to water during the WAG process to improve mobility ratio. In the PAG process, polymer flooding and immiscible/miscible CO2 injection are combined. To analyze the feasibility of PAG, models considering both miscible and polymer flooding processes are built to study the performance of PAG. In this paper, the sensitivity of polymer adsorption and concentration are studied. The feasibility of PAG in reservoirs with different permeabilities, different Dykstra-Parsons permeability variation coefficients (VDPs), and different fluids are also studied. A reservoir model from a typical section of the North Burbank Unit (NBU) is used to compare the performance between PAG, WAG, and polymer flooding. This study demonstrates that PAG can significantly improve recovery for immiscible/miscible flooding in homogeneous or heterogeneous reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1655-1668 ◽  
Author(s):  
Ali Telmadarreie ◽  
Japan J. Trivedi

Summary Carbonate reservoirs, deposited in the Western Canadian Sedimentary Basin (WCSB), hold significant reserves of heavy crude oil that can be recovered by nonthermal processes. Solvent, gas, water, and water-alternating-gas (WAG) injections are the main methods for carbonate-heavy-oil recovery in the WCSB. Because of the fractured nature of carbonate formations, many advantages of these production methods are usually in contrast with their low recovery factor. Alternative processes are therefore needed to increase oil-sweep efficiency from carbonate reservoirs. Foam/polymer-enhanced-foam (PEF) injection has gained interest in conventional heavy-oil recovery in recent times. However, the oil-recovery process by foam, especially PEF, in conjunction with solvent injection is less understood in fractured heavy-oil-carbonate reservoirs. The challenge is to understand how the combination of surfactant, gas, and polymer allows us to better access the matrix and efficiently sweep the oil. This study introduces a new approach to access the unrecovered heavy oil in fractured-carbonate reservoirs. Carbon dioxide (CO2) foam and CO2 PEF were used to decrease oil saturation after solvent injection, and their performance was compared with gas injection. A specially designed fractured micromodel was used to visualize the pore-scale phenomena during CO2-foam/PEF injection. In addition, the static bulk performances of CO2 foam/PEF were analyzed in the presence of heavy crude oil. A high-definition camera was used to capture high-quality images. The results showed that in both static and dynamic studies the PEF had high stability. Unlike CO2 PEF, CO2 foam lamella broke much faster and resulted in the collapse of the foam during heavy-oil recovery after solvent flooding. It appeared that foam played a greater role than just gas-mobility control. Foam showed outstanding improvement in heavy-oil recovery over gas injection. The presence of foam bubbles was the main reason to improve heavy-oil-sweep efficiency in heterogeneous porous media. When the foam bubbles advanced through pore throats, the local capillary number increased enough to displace the emulsified oil. PEF bubbles generated an additional force to divert surfactant/polymer into the matrix. Overall, CO2 foam and PEF remarkably increased heavy-oil recovery after solvent injection into the fractured reservoir.


Sign in / Sign up

Export Citation Format

Share Document