Oil Recovery by Gravity Drainage Into Horizontal Wells Compared With Recovery From Vertical Wells

1992 ◽  
Vol 7 (03) ◽  
pp. 255-260 ◽  
Author(s):  
H. Dykstra ◽  
W. Dickinson
2021 ◽  
Vol 3 (2) ◽  
pp. 111-123
Author(s):  
A. S. Mardanov ◽  
R. A. Yussubaliev ◽  
A. A. Yergaliyev ◽  
A. M. Rakhmetullin

Due to the growing share of high-viscosity oils in Kazakhstan, task of their effective development is becoming more complicated. Development of terrigenous reservoirs that have a complex structure and contain high-viscosity oil lead to low rates of sampling and low values of oil recovery factor. Currently, technologies that ensure high efficiency in development of such deposits are very expensive. The paper considers a pilot section of the development horizon of cretaceous system of the Tengri field, drilled with vertical wells in accordance with current project document. Further the average characteristics of the parameters of horizontal wells are compared and measures are proposed to improve the efficiency of further operation of these wells.


2021 ◽  
Vol 5 (12(81)) ◽  
pp. 4-8
Author(s):  
S. Abbasova

In fields with low-permeable reservoirs, the use of vertical wells becomes economically unprofitable, since a significant amount of reserves remains not involved in development. In these conditions, the most rational use of horizontal wells becomes. A horizontal well is drilled parallel to the plane of the reservoir and can drain a larger area than a vertical one, which makes it possible to increase the impact of the working agent. This, in turn, leads to an increase in well productivity and, ultimately, to an increase in oil recovery of productive formations. Due to the horizontal wellbore, fractured areas are exposed, due to which the flow rates of these wells increase somewhat compared to vertical ones. It becomes possible to develop a reservoir with minimal drawdowns with a much smaller number of wells. The purpose of this article is to provide a brief overview of the field application of horizontal wells in various reservoir conditions. The review of economically successful and unsuccessful wells allows the creation of a certain kind of list of parameters that are of the greatest importance for consideration in order to select a commercially successful application of horizontal wells.


2014 ◽  
Vol 912-914 ◽  
pp. 765-768
Author(s):  
Gang Xie ◽  
Hai Jun Yan ◽  
Deng Feng Ju ◽  
Zhi Ma ◽  
Ai Jun Wei ◽  
...  

In view of rapid water cut increasing and poor oil recovery with banded distribution with high permeability belt in sandstone reservoir of Huabei Oilfield,the electrical bridge technique for water shut-off is proposed. Based on years practice of vertical wells and similarity in Ohms and Darcys laws,the electrical model involved variable resistors series/parallel instead of reservoir distribution,the arm-bridge circuit combined with signal detection. Then response of the circuit by variable water shut-off could be simulated. The results indicated that,the driving pressure and seepage quantity at mid-low permeability channel could be greatly improved by the strong in-depth water-plugging at high permeability channel (L=20~40m),and the low permeability flowrate increased to a maximum of 55.3%. Then the gel dam in-depth fluid diversion technique was verified by water plugging and circuit simulation. The conclusions provided a valuable guidance for horizontal wells development enhanced.


2022 ◽  
Author(s):  
Alexey Yudin ◽  
Mohamed ElSebaee ◽  
Vladimir Stashevskiy ◽  
Omar Almethen ◽  
Ahmed AlJanahi ◽  
...  

Abstract The Ostracod formation in the Awali brownfield is an extremely challenging layer to develop because the tight carbonate rock is interbedded with shaly streaks and because of the presence of a nearby water-bearing zone. Although the Ostracod formation has been in development since 1960, oil recovery has not yet reached 5% because past stimulation attempts experienced rapid production decline. The current project incorporated aggressive fracture design coupled with a unique height growth control (HGC) workflow, improving the development of Ostracod reserves. The HGC technology is a combination of an engineering workflow supported by geomechanical modeling and an advanced simulator of in-situ kinetics and materials transport to model the placement of a customized, impermeable mixture of particles that will restrict fracture growth. The optimized treatment design included injections of the HGC mixture prior to the main fracturing treatment. This injection was done with a nonviscous fluid to improve settling to create an artificial barrier. After the success of a trial campaign in vertical wells, the technique was adjusted for the horizontal wellbores. The high clay content within the Ostracod layers creates a significant challenge for successful stimulation. The high clay content prevents successful acid fracturing and leads to severe embedment with conventional proppant fracturing designs. We introduced a new approach to stimulate this formation with an aggressive tip-screenout design incorporating a large volume of 12/20-mesh proppant to obtain greater fracture width and conductivity, resulting in a significant and sustained oil production gain. The carefully designed HGC technique was efficient in avoiding fracture breakthrough into the nearby water zone, enabling treatments of up to 450,000 lbm to be successfully contained above a 20-ft-thick shaly barrier with small horizontal stress contrast. Independent measurements proved that the fracture height was successfully contained. This trial campaign in vertical wells proved that the combination of aggressive, large fracture designs with the HGC method could help unlock the Ostracod’s potential. Three horizontal wells were drilled and simulated, each with four stages of adjusted HGC technique to verify if this aggressive method was applicable to challenging sand admittance in case of transverse fractures. This rare implementation of HGC mixtures in horizontal wells showed operational success and proof of fracture containment based on pressure signatures and production monitoring. The applied HGC technique was modified with additional injections and improved by advanced modeling that only recently became available. These contributed to a significant increase of treatment volume, making the jobs placed in the Ostracod some of the world’s largest utilizing HGC techniques. The experience gained in this project can be of a paramount value to any project dealing with hydraulic fracturing near a water formation with insufficient or uncertain stress barriers.


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


Sign in / Sign up

Export Citation Format

Share Document