Next Generation High Performance Invert Emulsion Drilling Fluids with Flat-Rheological Behavior

2021 ◽  
Author(s):  
Ashok Santra ◽  
Hasmukh Patel ◽  
Sivaprakash Shanmugam

Abstract The rheological properties of drilling fluids are crucial parameters for efficient drilling operations. Invert emulsion drilling fluids are the industry's preferred choice when it comes to extreme conditions like deepwater or high temperature and high pressure (HTHP) drilling due to their inherent thermal stability and effectiveness against water sensitive formations. In addition, another highly desired property of such drilling fluids is minimal sensitivity of the fluid flow properties for a wide range of application temperatures, known as flat-rheology behavior. We have developed four novel and next generation chemical additives: (i) a high temperature stable emulsifier, (ii) a low-end rheology modifier, (iii) a viscosifier with covalently linked organic groups, and (iv) a fluid loss control additive. Molecular architectural designs and synthesis of all four chemicals were carried out in our laboratory and used in optimum quantities to build industry's next generation invert emulsion fluids at density ranges from 75 – 135pcf (10-18ppg) and application temperature range of 60-450°F. Rheological and other important drilling fluid properties were tested at different downhole pressures and temperatures using a standard API recommended HTHP apparatus. The results demonstrated extreme thermal stability all the way from 60-450°F with excellent fluid loss control and ultrathin filter cake. The novel covalently-linked organophilic viscosifier used herein has proven superior thermal stability compared to existing organo-clay based systems especially at temperatures above 350°F. Novel secondary emulsifier and low-end rheology modifier have demonstrated excellent emulsion stability at temperatures up to 450°F. It has been an industry challenge to obtain true flat rheological behavior under high pressure and temperature using commercially available chemistries. However, very interestingly, fluids optimized in this work have exhibited excellent flat-rheological behavior for a wide range of temperatures. We will present a comparative analysis of the relationship between molecular structure and properties perspective of what is currently used in the industry versus those developed in this work. The current work has led to development of four novel chemical additives which are responsible for the industry's next generation high performance invert emulsion drilling fluids with flat-rheological behavior.

2021 ◽  
Author(s):  
Dimitri Khramov ◽  
Evgeny Barmatov

Abstract Emulsifier concentration in SBM is an important factor of drilling fluid stability. Proper concentration of amidoamine emulsifier is imperative for controlling low fluid loss and maintaining emulsion stability. This study investigates the physical and chemical interactions between emulsifier and other additives and describes the processes by which emulsifier is depleted from the drilling fluid. Three main pathways of emulsifier consumption are identified: emulsifier adsorption on solids found in drilling fluids and low gravity solids (LGS), chemical degradation, and to stabilize the invert emulsion. Design of experiments model and analytical procedure based on 1H NMR (nuclear magnetic resonance) spectroscopy was used to quantify the required emulsifier concentration in Non-Aqueous Fluid system (NAF). Additionally, model systems were used to estimate the excess of emulsifier, evaluate the emulsifier losses due to alkaline hydrolysis at elevated temperature, and measure adsorption of emulsifier on barite and various LGS types. Calculations for emulsifier depletion based on model systems were correlated to performance of formulated drilling fluids for verification. Typical emulsifier requirement in high performance NAF is 8-12 pounds per barrel (ppb). Majority of the emulsifier is adsorbed on weighting agents (barite) and rheology modifiers (clays), which are used to formulate NAF, that contribute to their effective dispersion in the solution and control fluid rheology. The adsorption process is found to be sensitive to the emulsifier concentration, solids mineralogy, wetting agent and temperature. Analytical Langmuir-Freundlich isotherm was used to describe adsorption data and estimate the adsorption capacity of the system. The emulsifier degradation pathway is another important factor of emulsifier consumption; however, emulsifier degradation at 250°F is not significant. While NAF are generally run ‘rich’ to mitigate depletion and maintain fluid stability, adsorption onto minerals will become an issue especially at high LGS concentration. These results will be greatly beneficial in the further development of NAF drilling fluid formulations and will assist field engineers in understanding the effect excess emulsifier will have on the drilling fluid and enable them to more effectively control the fluid properties under variations in emulsifier and LGS concentration during drilling.


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Yami ◽  
Michael Onoriode ◽  
Jacques Butcher ◽  
Nivika Gupta

Abstract The present paper describes the results of the formulation of an acid-soluble low ECD organoclay-free invert emulsion drilling fluid formulated with acid soluble manganese tetroxide and a specially designed bridging package. The paper also presents a short summary of field applications to date. The novel, non-damaging fluid has superior rheology resulting in lower ECD, excellent suspension properties for effective hole cleaning and barite-sag resistance while also reducing the risk of stuck pipe in high over balance applications. 95pcf high performance invert emulsion fluid (HPIEF) was formulated using an engineered bridging package comprising of acid-soluble bridging agents and an acid-soluble weighting agent viz. manganese tetroxide. The paper describes the filtration and rheological properties of the HPIEF after hot rolling at 300oF. Different tests such as contamination testing, sag-factor analysis, high temperature-high pressure rheology measurements and filter-cake breaking studies at 300oF were performed on the HPIEF. The 95pcf fluid was also subjected to particle plugging experiments to determine the invasion characteristics and the non-damaging nature of the fluids. The 95pcf HPIEF exhibited optimal filtration properties at high overbalance conditions. The low PV values and rheological profile support low ECDs while drilling. The static aging tests performed on the 95pcf HPIEF resulted in a sag factor of less than 0.53, qualifying the inherent stability for expected downhole conditions. The HPIEF demonstrated resilience to contamination testing with negligible change in properties. Filter-cake breaking experiments performed using a specially designed breaker fluid system gave high filter-cake breaking efficiency. Return permeability studies were performed with the HPIEF against synthetic core material, results of which confirmed the non-damaging design of the fluid. The paper thus demonstrates the superior performance of the HPIEF in achieving the desired lab and field performance.


2020 ◽  
Author(s):  
Xian-Bin Huang ◽  
Jin-Sheng Sun ◽  
Yi Huang ◽  
Bang-Chuan Yan ◽  
Xiao-Dong Dong ◽  
...  

Abstract High-performance water-based drilling fluids (HPWBFs) are essential to wellbore stability in shale gas exploration and development. Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles. This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition, plugging and lubrication performances. Shale inhibition performance was studied by linear swelling test and shale recovery test. Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope (SEM) observation. Extreme pressure lubricity test was used to evaluate the lubrication property. Experimental results show that laponite has good shale inhibition property, which is better than commonly used shale inhibitors, such as polyamine and KCl. Laponite can effectively plug shale pores. It considerably decreases the surface area and pore volume of shale, and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm. Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string. Besides, laponite can reduce the fluid loss volume. According to mechanism analysis, the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces.


1982 ◽  
Vol 22 (02) ◽  
pp. 171-180 ◽  
Author(s):  
David C. Thomas

Abstract Starch- and cellulose-based polymers have been used to control water loss for many years. Thermal degradation of the polymers is the most important problem with their use. Representative starch and cellulose fluid loss reducers were tested for their thermal stability in mud systems. The thermal decomposition was found to be dependent on both exposure time and temperature. The rate of decomposition can be predicted using first-order reaction rate kinetics and the decomposition activation energy estimated for both polymer types. This technique allows the calculation of a polymer's usable lifetime at a given temperature. A table of half-lives (time for fluid loss to double) vs. exposure temperature is presented for both starch- and cellulose-based polymers. This paper discusses the results of the calculations and the method used to obtain the data. The method is generally applicable to any material used in drilling fluids that is subject to thermal degradation. Introduction Starch, carboxymethyl cellulose (CMC), and their derivatives frequently are used in drilling fluids as viscosifiers and fluid-loss reducers. Their general properties are well known because they have been used for properties are well known because they have been used for many years. One important area that has been neglected somewhat is the effect of exposure to various temperatures for varying lengths of time on fluid-loss reduction. Vendor literature quotes maximum temperature limits for starch from 200 to 250 degrees F (93 to 121 degrees C). This information is useful but is not sufficient for precise work. The length of exposure to a certain temperature bears strongly on a polymer's stability. For example, a standard pregelatinized starch might have an API fluid loss of 20 cm3 after exposure at 250 degrees F (121 degrees C) for 4 hours, while after 24 hours its fluid loss is greater than 80 cm3 and after 48 hours is 240 cm3. Some data may show that starch gave an acceptable high-temperature high-pressure (HTHP) fluid loss at 275 or 300 degrees F (135 or 149 degrees C). These data can be misleading because a HTHP fluid-loss test can be completed in an hour, while long-term aging at the same temperature will destroy the polymer. Similar comments can be made about cellulosic polymers except that the temperatures stated are about 50 degrees F (28 degrees C) higher.Starch- and cellulose-based polymers degrade thermally by the same mechanism. The polymer chains are broken, and the glucopyranose units are converted to other compounds. The decomposition rate can be determined by use of chemical kinetics methods. This paper describes experiments that determined the stability of these polymers at various temperatures using kinetic methods. Starch Chemistry Starch, as used in drilling fluids, is a powder that disperses readily in water to give a low-viscosity fluid that can be used to seal microfractures and prevent fluid loss. This starch has been processed after separation from corn, wheat, rice, or potatoes. "Pregelatinization" is a cooking process that ruptures the starch granules to release the constituent starch polymer molecules. Cooking at 140 to 212 degrees F (60 to 100 degrees C) destroys the outer structure of the granule, yielding a thick slurry, much like thickened gravy. This slurry is dried and milled, giving the product used in drilling fluids. This gelatinization process was done at the rig in early applications of starch to drilling fluids. Cooking of starch at the rig ended in the late 1930's to early 1940's with the availability of pregelatinized starches. There has been some recent interest in ungelatinized starches to provide a "time-release" source of starch for fluid-loss control. Such materials would be limited to relatively hot wells [about 200 degrees F (93 degrees C)] because the march granules must be broken down to release the starch molecule for fluid-loss control. SPEJ P. 171


2019 ◽  
Vol 491 (2) ◽  
pp. 3022-3041 ◽  
Author(s):  
Manodeep Sinha ◽  
Lehman H Garrison

ABSTRACT The two-point correlation function (2PCF) is the most widely used tool for quantifying the spatial distribution of galaxies. Since the distribution of galaxies is determined by galaxy formation physics as well as the underlying cosmology, fitting an observed correlation function yields valuable insights into both. The calculation for a 2PCF involves computing pair-wise separations and consequently, the computing time-scales quadratically with the number of galaxies. The next-generation galaxy surveys are slated to observe many millions of galaxies, and computing the 2PCF for such surveys would be prohibitively time-consuming. Additionally, modern modelling techniques require the 2PCF to be calculated thousands of times on simulated galaxy catalogues of at least equal size to the data and would be completely unfeasible for the next-generation surveys. Thus, calculating the 2PCF forms a substantial bottleneck in improving our understanding of the fundamental physics of the Universe, and we need high-performance software to compute the correlation function. In this paper, we present corrfunc – a suite of highly optimized, openmp parallel clustering codes. The improved performance of corrfunc arises from both efficient algorithms as well as software design that suits the underlying hardware of modern CPUs. corrfunc can compute a wide range of 2D and 3D correlation functions in either simulation (Cartesian) space or on-sky coordinates. corrfunc runs efficiently in both single- and multithreaded modes and can compute a typical two-point projected correlation function [wp(rp)] for ∼1 million galaxies within a few seconds on a single thread. corrfunc is designed to be both user-friendly and fast and is publicly available at https://github.com/manodeep/Corrfunc.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Jimoh K. Adewole ◽  
Musa O. Najimu

This study investigates the effect of using date seed-based additive on the performance of water-based drilling fluids (WBDFs). Specifically, the effects of date pit (DP) fat content, particle size, and DP loading on the drilling fluids density, rheological properties, filtration properties, and thermal stability were investigated. The results showed that dispersion of particles less than 75 μm DP into the WBDFs enhanced the rheological as well as fluid loss control properties. Optimum fluid loss and filter cake thickness can be achieved by addition of 15–20 wt % DP loading to drilling fluid formulation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3037
Author(s):  
María J. Martín-Alfonso ◽  
Javier Pozo ◽  
Clara Delgado-Sánchez ◽  
Francisco José Martínez-Boza

Nowadays, the reduction of the environmental impact associated with the operation of the oil industry is a primary concern. A growing trend is to develop low-toxicity formulations based on biodegradable components. In this sense, vegetable oils structured with nanomaterials could be an alternative to mineral or synthetic oils for sustainable fluid formulations. Hydrophobic fumed silica nanoparticles have the capability to change the rheological behavior of oil in suspensions, providing a large variety of non-Newtonian behaviors over a wide range of temperatures, from shear-thinning to gel-like, depending on the concentration and the nanosilica’s hydrophobicity, that permits the design of fluids with selected characteristic and applications. This work explores the microstructure and the rheological behavior of hydrophobic fumed silica dispersed in a sunflower oil as a function of temperature and pressure. The results suggest that the suspensions of hydrophobic silica in sunflower oil reveals appropriate rheological and thermal properties over a wide range of temperatures and pressures to serve as components of sustainable drilling fluids.


Sign in / Sign up

Export Citation Format

Share Document