An Experimental and Simulation Study of CO2 Sequestration in an Underground Formations; Impact on Geomechanical and Petrophysical Properties

2021 ◽  
Author(s):  
Sobia Fatima ◽  
Hafiz Muhammad Mutahhar Khan ◽  
Zeeshan Tariq ◽  
Mohammad Abdalla ◽  
Mohamed Mahmoud

Abstract Carbon dioxide (CO2) sequestration is a technique to store CO2 into an underground formation. CO2 can cause a severe reaction with the underground formation and injection tubing inside the well. Successful CO2 storage into underground formations depends on many factors such as efficient sealing, no escaping from the storage, and minimum corrosion to injection tubing/casing. Therefore, proper planning involving thorough study and reaction kinetics of CO2 with the underground formation is indeed necessary for proper planning. The main aim and objective of this study are to investigate the effect of CO2 storage with different cap rocks such as tight carbonate and shale under simulated reservoir conditions. The samples were stored for different times such as 10, 20, and 120 days. The objectives of the study were achieved by carrying out extensive laboratory experiments before and after sequestration. The laboratory experiments included were rock compressive and tensile strength tests, petrophysical tests, and rock mechanical tests. The laboratory results were later used to investigate the reaction kinetics study of CO2 with the underground formation using CMG simulation software. The effect of injection rate, the point of injection, purity of the injection fluid, reservoir heterogeneity, reservoir depth, and minimum miscibility pressure was analyzed. In this simulation model, CO2 is injected for 25 years using CMG-GEM simulation software and then the fate of CO2 post injection is modeled for the next 225 years. The simulation results showed a notable effect on the mechanical strength and petrophysical parameters of the rock after sequestration, also the solubility of CO2 decreases with the increase in salinity and injection pressure. The results also showed that the storage of CO2 increases the petrophysical properties of porosity and permeability of the formation rock when the storage period is more than 20 days because of calcite precipitation and CO2 dissolution. A storage period of fewer than 20 days does not show any significant effect on the porosity and permeability of carbonate reservoir rock. A sensitivity analysis was carried out which showed that the rate of CO2 sequestration is sensitive to the mineral-water reaction kinetic constants. The sensitivity of CO2 sequestration to the rate constants decreases in magnitude respectively for different clay minerals. The new simulation model considers the effect of reaction kinetics and geomechanical parameters. The new model is capable of predicting the compatibility of CO2 sequestration for a particular field for a particular time.

Author(s):  
Jhonatan Jair Arismendi Florez ◽  
Jean Vicente Ferrari ◽  
Mateus Michelon ◽  
Carina Ulsen

Plugs are cylindrical rocks with known dimensions that are extracted typically from reservoir formations with representative mineralogical compounds, petrophysical properties and oilfield fluids. They are used in the laboratory to understand the behaviour of oil in reservoirs. One of their applications is to study the screening of chemicals, such as surfactants and polymers, for enhanced oil recovery research before being applied in the reservoir. Many of Brazil’s pre-salt basins are located in ultra-deep waters, and the high heterogeneities of its offshore carbonate reservoirs make the extraction of representative rock samples difficult, risky and expensive. The literature reports the construction of synthetic plug samples that reproduce rocks as an alternative and viable solution for this issue. However, there is a lack of publications that focus on the construction of representative carbonate plugs that considers both the mineralogical composition and petrophysics properties, such as porosity and permeability. In this work, the construction of synthetic plugs is studied, using a combination of published methodologies to achieve an alternative construction of synthetic carbonate plugs for laboratory scale studies. Using a procedure based on the use of pulverized rock matrices with known particle sizes, uniaxial compaction, and probable CaCO3 solubility control by changing temperature and pH, it was possible to obtain synthetic carbonate plugs with a similar mineralogy to the natural carbonate reservoir. However, further studies are necessary to obtain more controlled petrophysical properties of such samples.


2019 ◽  
Vol 64 (4) ◽  
pp. 491-504
Author(s):  
Mohammad Afkhami Karaei ◽  
Bizhan Honarvar ◽  
Amin Azdarpour ◽  
Erfan Mohammadian

The lack of fundamental experimental studies on low permeable carbonate reservoirs for CO2 sequestration purposes is essential for further application of CO2 sequestration as a highly-anticipated CO2 mitigation method in deep saline aquifers, specifically those with low permeabilities. The core samples were taken from a carbonate reservoir in Iran and the brine composition was based on that of the same formation. The objective of this study is to investigate permeability alteration during CO2 sequestration in the aquifers of a low permeable Iranian carbonate reservoir. Various parameters have been investigated. The effects of different parameters such as injection pressure, confining pressure, and temperature on permeability alteration of the cores was investigated. Moreover, the interfacial tension (IFT) of CO2/brine was also determined at pressures and temperatures up to 7 MPa and 100 °C, respectively. The experimental results showed CO2 solubility and rock dissolution to be the governing mechanism when CO2 was injected into carbonate cores. The permeability measurements showed that permeability increases by increasing injection pressure and decreases by increasing confining pressure and temperature. The IFT measurement results showed that the IFT decreases significantly when there is an increase in pressure and temperature.


2021 ◽  
Author(s):  
Pankaj Kumar Tiwari ◽  
Debasis Priyadarshan Das ◽  
Parimal Arjun Patil ◽  
Prasanna Chidambaram ◽  
Zoann Low ◽  
...  

Abstract CO2 sequestration is a process for eternity with a possibility of zero-degree failure. Monitoring, Measurement and Verification (MMV) planning of CO2 sequestration is crucial along with geological site selection, transportation and injection process. Several geological formations have been evaluated in the past for potential storage site which divulges the containment capacity of identified large, depleted gas reservoirs as well as long term conformance. Offshore environment makes MMV plan challenging and demands rigorous integration of monitoring technologies to optimize project economic and involved logistics. The role of MMV is critical for sustainability of the CO2 storage project as it ensures that injected CO2 in the reservoir is intact and safely stored for hundreds of years post-injection. Field specific MMV technologies for CO2 plume migration with proactive approach were identified after exercising pre-defined screening criteria. Marine CO2 dispersion study is carried out to confirm the impact of any potential leakage along existing wells and faults, and to understand the CO2 behavior in marine environment in the event of leakage. Study incorporates integration of G&G subsurface and Meta-Ocean & Environment data along with other leakage character information. Multi-Fiber Optic Sensors System (M-FOSS) to be installed in injector wells for monitoring well & reservoir integrity, overburden integrity and monitoring of early CO2 plume migration by acquiring & analyzing the distributed sensing data (DTS/DPS/DAS/DSS). Based on 3D couple modeling, a maximum injection rate of approximately 200 MMscfd of permeate stream produced from a high CO2 contaminated gas field can be achieved. Injectivity studies indicate that over 100 MMSCFD of CO2 injection rates into depleted gas reservoir is possible from a single injector. Injectivity results are integrated with dynamic simulation to determine number and location of injector wells. 3D DAS-VSP simulation results show that a subsurface coverage of approximately 3 km2 per well is achievable, which along with simulated CO2 plume extent help to determine the number of wells required to get maximum monitoring coverage for the MMV planning. As planned injector wells are field centric and storage site area is large, DAS-VSP find limited coverage to monitor the CO2 plume. To overcome this challenge, requirement of surface seismic acquisition survey is recommended for full field monitoring. An integrated MMV plan is designed for cost-effective long-term offshore monitoring of CO2 plume migration. The present study discusses the impacting parameters which make the whole process environmentally sustainable, economically viable and adhering to national and international regulations.


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

With recent concerns on CO2 emissions from coal fired electricity generation plants; there has been major emphasis on the development of safe and economical Carbon Dioxide Capture and Sequestration (CCS) technology worldwide. Saline reservoirs are attractive geological sites for CO2 sequestration because of their huge capacity for sequestration. Over the last decade, numerical simulation codes have been developed in U.S, Europe and Japan to determine a priori the CO2 storage capacity of a saline aquifer and provide risk assessment with reasonable confidence before the actual deployment of CO2 sequestration can proceed with enormous investment. In U.S, TOUGH2 numerical simulator has been widely used for this purpose. However at present it does not have the capability to determine optimal parameters such as injection rate, injection pressure, injection depth for vertical and horizontal wells etc. for optimization of the CO2 storage capacity and for minimizing the leakage potential by confining the plume migration. This paper describes the development of a “Genetic Algorithm (GA)” based optimizer for TOUGH2 that can be used by the industry with good confidence to optimize the CO2 storage capacity in a saline aquifer of interest. This new code including the TOUGH2 and the GA optimizer is designated as “GATOUGH2”. It has been validated by conducting simulations of three widely used benchmark problems by the CCS researchers worldwide: (a) Study of CO2 plume evolution and leakage through an abandoned well, (b) Study of enhanced CH4 recovery in combination with CO2 storage in depleted gas reservoirs, and (c) Study of CO2 injection into a heterogeneous geological formation. Our results of these simulations are in excellent agreement with those of other researchers obtained with different codes. The validated code has been employed to optimize the proposed water-alternating-gas (WAG) injection scheme for (a) a vertical CO2 injection well and (b) a horizontal CO2 injection well, for optimizing the CO2 sequestration capacity of an aquifer. These optimized calculations are compared with the brute force nearly optimized results obtained by performing a large number of calculations. These comparisons demonstrate the significant efficiency and accuracy of GATOUGH2 as an optimizer for TOUGH2. This capability holds a great promise in studying a host of other problems in CO2 sequestration such as how to optimally accelerate the capillary trapping, accelerate the dissolution of CO2 in water or brine, and immobilize the CO2 plume.


2021 ◽  
Author(s):  
Said Beshry Mohamed ◽  
Sherif Ali ◽  
Mahmoud Fawzy Fahmy ◽  
Fawaz Al-Saqran

Abstract The Middle Marrat reservoir of Jurassic age is a tight carbonate reservoir with vertical and horizontal heterogeneous properties. The variation in lithology, vertical and horizontal facies distribution lead to complicated reservoir characterization which lead to unexpected production behavior between wells in the same reservoir. Marrat reservoir characterization by conventional logging tools is a challenging task because of its low clay content and high-resistivity responses. The low clay content in Marrat reservoirs gives low gamma ray counts, which makes reservoir layer identification difficult. Additionally, high resistivity responses in the pay zones, coupled with the tight layering make production sweet spot identification challenging. To overcome these challenges, integration of data from advanced logging tools like Sidewall Magnetic Resonance (SMR), Geochemical Spectroscopy Tool (GST) and Electrical Borehole Image (EBI) supplied a definitive reservoir characterization and fluid typing of this Tight Jurassic Carbonate (Marrat formation). The Sidewall Magnetic resonance (SMR) tool multi wait time enabled T2 polarization to differentiate between moveable water and hydrocarbons. After acquisition, the standard deliverables were porosity, the effective porosity ratio, and the permeability index to evaluate the rock qualities. Porosity was divided into clay-bound water (CBW), bulk-volume irreducible (BVI) and bulk-volume moveable (BVM). Rock quality was interpreted and classified based on effective porosity and permeability index ratios. The ratio where a steeper gradient was interpreted as high flow zones, a gentle gradient as low flow zones, and a flat gradient was considered as tight baffle zones. SMR logging proved to be essential for the proper reservoir characterization and to support critical decisions on well completion design. Fundamental rock quality and permeability profile were supplied by SMR. Oil saturation was identified by applying 2D-NMR methods, T1/T2 vs. T2 and Diffusion vs. T2 maps in a challenging oil-based mud environment. The Electrical Borehole imaging (EBI) was used to identify fracture types and establish fracture density. Additionally, the impact of fractures to enhance porosity and permeability was possible. The Geochemical Spectroscopy Tool (GST) for the precise determination of formation chemistry, mineralogy, and lithology, as well as the identification of total organic carbon (TOC). The integration of the EBI, GST and SMR datasets provided sweet spots identification and perforation interval selection candidates, which the producer used to bring wells onto production.


2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


2021 ◽  
Author(s):  
XueTao Wei ◽  
caixue yue ◽  
DeSheng Hu ◽  
XianLi Liu ◽  
YunPeng Ding ◽  
...  

Abstract The processed surface contour shape is extracted with the finite element simulation software, and the difference value of contour shape change is used as the parameters of balancing surface roughness to construct the infinitesimal element cutting finite element model of supersonic vibration milling in cutting stability domain. The surface roughness trial scheme is designed in the central composite test design method to analyze the surface roughness test result in the response surface methodology. The surface roughness prediction model is established and optimized. Finally, the finite element simulation model and surface roughness prediction model are verified and analyzed through experiment. The research results show that, compared with the experiment results, the maximum error of finite element simulation model and surface roughness prediction model is 30.9% and12.3%, respectively. So, the model in this paper is accurate and will provide the theoretical basis for optimization study of auxiliary milling process of supersonic vibration.


Sign in / Sign up

Export Citation Format

Share Document