Housingless ESPs for Slim Completion Wells

2021 ◽  
Author(s):  
Jinjiang Xiao ◽  
Chidirim Ejim

Abstract This paper describes a new electrical submersible pump (ESP) design concept to overcome the challenges of applications in slim well completions or thru-tubing deployment. The housing of the conventional pump is removed, allowing the pump impellers to have a larger diameter. The impact of this design change on pump hydraulic performance is assessed in this paper. Downhole ESPs operate in environments where space is limited radially. This is especially the case for slim completions or for thru-tubing rigless deployment. To provide the required rate and total dynamic head, the current approach is to use permanent magnetic motors and operate the slim systems at rotational speed over the conventional speed of 3500-4000 RPM. High-speed operations require new pump stage designs to minimize erosion and vibration. This paper provides an alternative pump design, which removes the pump housing with the benefit of increasing the impeller tip diameter, and hence potentially reducing pump length and operational speed. To ensure the pump retains the well fluids, the diffusers are designed to be externally threaded with an O-ring feature. The centrifugal pump affinity laws are applied to evaluate the impact of removing the pump housing and increasing the impeller outside diameter. A typical ESP housing wall thickness is about 0.18-0.25 inch. With the housing removed, the incremental space available for the impeller tip to occupy is increased by 0.36-0.5 inch. Analysis shows that, for the same pump speed as a conventional pump with a housing, a housingless pump will increase the head generated by 23-32%, and the rate capacity about 36-51%, depending on the pump series. In general, the smaller the pump outer diameter, the greater the flow and head capacity increase. This is because the available space due to removing the housing becomes a considerable size of the impeller tip diameter for the smaller series pumps. The elimination of pump housing enables impellers with a larger diameter to be used to generate more head per stage. In comparison to a conventional pump of the same outside diameter, and providing the same amount of total dynamic head, the housingless pump can have fewer stages and a shorter length or operate at a reduced speed. The reduced length can help mitigating pump-bending stress for installation in deviated or horizontal wells. The reduction in required operating speeds will reduce pump wears, heat generation and vibration. The housingless ESPs have applications for slim well completions or thru-tubing deployments.

Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper the experimental results including bearing temperature distribution, power dissipation, bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


Author(s):  
Clay S. Norrbin ◽  
Dara W. Childs ◽  
Stephen Phillips

Stability and synchronous-response predictions, which were presented by Childs et al. (2014, “A Lateral Rotordynamics Primer on Electric Submersible Pumps (ESPs) for Deep Subsea Applications,” 43th International Pump Users Symposium, Texas A&M University, College Station, TX, pp. 1–18), are re-evaluated to include the effect of the fluid between the pump housing and well casing. Conclusions are made based on these new findings. The same two-line rotor–housing model is used to model the pump's rotor and its housing. The model dimensions are based on direct measurements of an ESP. The pump rotor and pump housing are only connected together at each stage by reaction forces and moments from seals and bushings. The rotor model is pinned to the housing at the rotor's ends. The housing model is pinned to ground at its ends. Synchronous response predictions are presented for: (1) relative rotor–housing motion and (2) housing velocity-response amplitudes. When handling viscosity of water, the rotor–housing model is predicted to be stable at new (centered) 1× clearances but rapidly becomes unstable with enlarged clearances (2× and 3×), primarily due to rapidly dropping rotor–housing natural frequencies. The impact of introducing effective swirl brakes for the stages' wear ring seals was investigated for a pump running at 3600 rpm. Their predicted impact on stability and synchronous response was: (1) Onset speeds of instabilities (OSIs) were elevated well above running speed and (2) synchronous response amplitudes were reduced modestly. Housing-response amplitudes varied considerably with the choice of housing-termination locations. For a pump rotor length of Lr, varying the lengths of a centered housing over 1.5 Lr, 2 Lr, and 3 Lr changes the housing's natural frequency. This natural frequency can coincide with the running speed with proper termination conditions. If the running speed and natural frequency coincide, large housing vibration amplitudes associated with resonance would exceed most vibration regulations; however, relative rotor–stator response amplitudes were a small fraction of clearances for all the cases. When handling emulsions at markedly higher viscosities, with a pump speed of 3600 rpm and new centered clearances, the predicted OSI was below 300 rpm. The OSI rapidly increased as the seals were displaced eccentrically, quickly elevating the first rotor–stator natural frequency above 1800 rpm and the OSI above 3600 rpm. With the model stabilized at 0.2 eccentricity, the synchronous relative rotor–housing amplitudes were a small fraction of seal clearances. Swirl brakes were not predicted to be effective in elevating pump OSIs for high viscosity fluids with new clearances; however, they became effective as clearances were increased. An ESP housing can contact the well casing in many possible scenarios (axial locations, contact-area length or girth, etc.). A midspan, point radial contact was examined and modeled as a stiff-spring connection from the housing to ground. For both water and oil–water emulsions, a stiff housing-to-casing contact produced major elliptical housing motion (versus circular motion without contact). However, it had a comparably minor impact on relative rotor–housing response amplitudes or rotordynamic stability.


Author(s):  
Peter Gloeckner ◽  
Klaus Dullenkopf ◽  
Michael Flouros

Operating conditions in high speed mainshaft ball bearings applied in new aircraft propulsion systems require enhanced bearing designs and materials. Rotational speeds, loads, demands on higher thrust capability, and reliability have increased continuously over the last years. A consequence of these increasing operating conditions are increased bearing temperatures. A state of the art jet engine high speed ball bearing has been modified with an oil channel in the outer diameter of the bearing. This oil channel provides direct cooling of the outer ring. Rig testing under typical flight conditions has been performed to investigate the cooling efficiency of the outer ring oil channel. In this paper, the experimental results including bearing temperature distribution, power dissipation, and bearing oil pumping and the impact on oil mass and parasitic power loss reduction are presented.


Author(s):  
Clay S. Norrbin ◽  
Dara W. Childs ◽  
Stephen Phillips

Stability and synchronous-response predictions, which were presented in the paper “A Lateral Rotordynamics Primer on Electric Submersible Pumps (ESPs) for Deep Subsea Applications” [1], are reevaluated to include the effect of the fluid between the pump housing and well casing. Conclusions are made based on these new findings. The same two-line rotor-housing model is used to model the pump’s rotor and its housing. The model dimensions are based on direct measurements of an ESP. The pump rotor and pump housing are only connected together at each stage by reaction forces and moments from seals and bushings. The rotor model is pinned to the housing at the rotor’s ends. The housing model is pinned to ground at its ends. Synchronous response predictions are presented for: (1) relative rotor-housing motion, and (2) housing velocity-response amplitudes. When handling viscosity of water, the rotor-housing model is predicted to be stable at new (centered) 1X clearances but rapidly becomes unstable with enlarged clearances (2X, 3X), primarily due to rapidly dropping rotor-housing natural frequencies. The impact of introducing effective swirl brakes for the stages’ wear ring seals was investigated for a pump running at 3600 rpm. Their predicted impact on stability and synchronous response were: (1) Onset speeds of instabilities (OSIs) were elevated well above running speed, and (2) Synchronous response amplitudes were reduced modestly. Housing-response amplitudes varied considerably with the choice of housing-termination locations. For a pump rotor length of Lr, varying the lengths of a centered housing over 1.5Lr, 2Lr, and 3Lr changes the housing’s natural frequency. This natural frequency can coincide with the running speed with proper termination conditions. If the running speed coincided large housing vibration amplitudes associated with resonance would exceed most vibration regulations; however, relative rotor-stator-response amplitudes were a small fraction of clearances for all cases. When handling emulsions at markedly higher viscosities, with a pump speed of 3600 rpm and new centered clearances, the predicted OSI was below 300 rpm. The OSI rapidly increased as the seals were displaced eccentrically, quickly elevating the 1st rotor-stator natural frequency above 1800 rpm and the OSI above 3600 rpm. With the model stabilized at 0.2 eccentricity, the synchronous relative rotor-housing amplitudes were a small fraction of seal clearances. Swirl brakes were not predicted to be effective in elevating pump OSIs for high viscosity fluids with new clearances; however, they became effective as clearances were increased. An ESP housing can contact the well casing in many possible scenarios (axial locations, contact-area length or girth, etc.). A mid-span, point radial contact was examined and modeled as a stiff-spring connection from the housing to ground. For both water and oil-water emulsions, a stiff housing-to-casing contact produced major elliptical housing motion (versus circular motion without contact). However, it had a comparably minor impact on relative rotor-housing response amplitudes or rotordynamic stability.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012034
Author(s):  
A I Fedyushkin ◽  
A N Rozhkov ◽  
A O Rudenko

Abstract The collision of water drops with a thin cylinder is studied. The droplet flight trajectory and the cylinder axis are mutually perpendicular. In the experiments, the drop diameter is 3 mm, and the diameter of horizontal stainless-steel cylinders is 0.4 and 0.8 mm. The drops are formed by a liquid slowly pumped through a vertical stainless-steel capillary with an outer diameter of 0.8 mm, from which droplets are periodically separated under the action of gravity. The droplet velocity before collision is defined by the distance between the capillary cut and the target (cylinder); in experiments, this distance is approximately 5, 10, and 20 mm. The drop velocities before the impact are estimated in the range of 0.2–0.5 m/s. The collision process is monitored by high-speed video recording methods with a frame rate of 240 and 960 Hz. The test liquids are water. Experiments and numerical simulation show that, depending on the drop impact height (droplets velocity) different scenarios of a drop collision with a thin cylinder are possible: a short-term recoil of a drop from an obstacle, a drop flowing around a cylindrical obstacle while maintaining the continuity of the drop, the breakup of a drop into two secondary drops, one of which can continue flight and the other one is captured by the cylinder, or both secondary droplets continue to fly, and the drop can be also captured by the cylinder, until the impact of the next drop(s) forces the accumulated drop to detach from the cylinder. Numerical modeling satisfactorily reproduces the phenomena observed in the experiment.


Author(s):  
Hrishikesh V. Deo ◽  
Deepak Trivedi

Self–correcting Compliant Plate Seals are being developed for various turbomachinery sealing applications including gas turbines, steam turbines, aircraft engines and oil & gas compressors. These seals consist of compliant plates attached to a stator in a circumferential fashion around the rotor. The compliant plates have a slot that extends radially inwards from the seal outer diameter, and an intermediate plate extends inwards into this slot from stator. This design is capable of providing passive hydrostatic feedback forces acting on the compliant plates that balance at a small tip–clearance. Due to this self–correcting behavior, this seal is capable of providing high differential pressure capability and low leakage within a limited axial span, and robust non–contact operation even in the presence of large rotor transients. In this paper we have described the testing of Compliant Plate Seals in a static leakage test rig (“shoebox” rig) to study the impact of different design parameters on leakage and vibration. A novel high–speed visualization set–up is described and the high–speed videos demonstrate robust non–contact operation for different assembly clearances, bridge–gaps and bridge–heights, for various differential pressure and pressure ratio conditions. The reported leakage results indicate that the leakage is relatively insensitive to assembly clearances due to the self–correcting behavior.


Author(s):  
Yu. I. Tilinin ◽  
◽  
Ch. O. Bakhtinova ◽  
E. V. Khoroshenkaja ◽  
V. Yu. Tilinin ◽  
...  

In the context of the dynamic development of innovations, the time factor for the implementation of new technologies obtains a dominant character, herewith, a rapid creation of infrastructure from prefabricated building structures is required. The current approach of assigning the durability of buildings in the design does not correspond to the current dynamics of competition and delays the implementation of innovations. The speed of investment and construction projects` implementation by reducing the construction time gives a significant economic advantage. Therefore, when designing, it is necessary to predict the expected period of demand for the created object for economic or power purpose and apply construction systems providing the appropriate durability. As a rule, when creating an object of federal significance, urban planning tasks of developing territories are solved in a short time. One of the ways of speeding up construction process is the use of prefabricated demountable building systems. After having analyzed foreign experience, the authors propose new building systems and improved technologies for erection of prefabricated buildings from lightweight building structures. Taking into account the impact of the time factor on selecting the durability of buildings, the authors substantiate the relevance of introducing into the practice of building frames from light steel thin-walled structures, enclosing structures from sandwich panels, volume-block and transformable buildings.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


Sign in / Sign up

Export Citation Format

Share Document