Recovery Improvement Using Geological, Technical and Operational Factors of Field Development That Influence the Character of Inflow Profiles in Horizontal Laterals

2021 ◽  
Author(s):  
Nadir Husein ◽  
Evgeny Malyavko ◽  
Igor Novikov ◽  
Albina Drobot ◽  
Anton Buyanov ◽  
...  

Abstract Currently, it is hard to imagine oil field development management without various surveys, involving resource optimisation for more economical reserves recovery. In this context, the application of new technologies aimed at diagnostics of the state of producing wells opens up multiple opportunities to identify the causes of premature water flooding and reduction in oil production, clarify the geology of the developed deposit, and obtain other useful information in a cost-efficient manner. For several decades now, well logging has been the source of information for field operators on the producing reservoir performance and the composition of fluid flowing across the reservoir through target intervals. However, in the course of time, the industry tends to seek advanced technologies and alternative production logging techniques for well performance diagnostics. Marker-based production logging is just one of the techniques employed to obtain additional data that can be extremely important for prompt decision-making in case of any complicating factors. At the same time, such information requires proper processing and interpretation. The information on how various factors impact the production profile helps develop a set of measures to adjust the oil flow into the well. In this regard, the task above offers a promising outlook for improving the development system efficiency using selective reservoir stimulation, as far as unconventional reservoirs and hard-to-recover reserves are concerned. Therefore, the upstream industry puts a strong focus on further research in this area today.

2019 ◽  
pp. 47-51
Author(s):  
Evgeny V. Panikarovskii ◽  
Valentin V. Panikarovskii ◽  
Alexandra E. Anashkina

The Vankor oil field is in the third stage of the development. Well stock mostly includes horizontal and directional wells. Analysis of the field development showed that actual development rate is much higher than planned. Energy potential of the field is drained out due to formation pressure decline and water flooding. New technologies for restoring well productivity, such as acid treatment and hydraulic fracturing should be introduced to maintain planned development rate. Drilling multilateral wells should be used as main enhanced oil recovery technique.


2021 ◽  
Author(s):  
Pavel Dmitrievich Gladkov ◽  
Anastasiia Vladimirovna Zheltikova

Abstract As is known, fractured reservoirs compared to conventional reservoirs have such features as complex pore volume structure, high heterogeneity of the porosity and permeability properties etc. Apart from this, the productivity of a specific well is defined above all by the number of natural fractures penetrated by the wellbore and their properties. Development of fractured reservoirs is associated with a number of issues, one of which is related to uneven and accelerated water flooding due to water breakthrough through fractures to the wellbores, for this reason it becomes difficult to forecast the well performance. Under conditions of lack of information on the reservoir structure and aquifer activity, the 3D digital models of the field generated using the hydrodynamic simulators may feature insufficient predictive capability. However, forecasting of breakthroughs is important in terms of generating reliable HC and water production profiles and decision-making on reservoir management and field facilities for produced water treatment. Identification of possible sources of water flooding and planning of individual parameters of production well operation for the purpose of extending the water-free operation period play significant role in the development of these reservoirs. The purpose of this study is to describe the results of the hydrochemical monitoring to forecast the water flooding of the wells that penetrated a fractured reservoir on the example of a gas condensate field in Bolivia. The study contains data on the field development status and associated difficulties and uncertainties. The initial data were results of monthly analyses of the produced water and the water-gas ratio dynamics that were analyzed and compared to the data on the analogue fields. The data analysis demonstrated that first signs of water flooding for the wells of the field under study may be diagnosed through the monitoring of the produced water mineralization - the water-gas ratio (WGR) increase is preceded by the mineralization increase that may be observed approximately a month earlier. However, the data on the analogue fields shows that this period may be longer – from few months to two years. Thus, the hydrochemical method within integrated monitoring of development of a field with a fractured reservoir could be one of the efficient methods to timely adjust the well operation parameters and may extend the water-free period of its operation.


Author(s):  
М. А. Куразов ◽  
З. Х. Газабиева ◽  
Р. Х. Моллаев ◽  
А. Ш. Халадов

Гидравлический разрыв пласта (ГРП) представляет собой комплексную технологию обработок скважин. При этом его следует рассматривать не только как средство воздействия на призабойную зону пласта (ПЗП), но и как один из существенных элементов системы разработки месторождения в целом. Технологические схемы ГРП, в том числе с последующим химическим воздействием, различаются в зависимости от коллекторских свойств обрабатываемых объектов. Их эффективность определяется условиями, связанными с фильтрационными характеристиками пластов, то есть коэффициентами проницаемости близлежащих и удаленных зон объекта. При этом подход к проектированию обработок ГРП будет различным в низко- и высокопроницаемых пластах, и в этой связи грамотный выбор скважин имеет существенное значение. Для исключения смыкания трещин после ГРП и снятия давления в призабойной зоне пласта (ПЗП) в скважины закачиваются различные расклинивающие агенты. Расклинивающие агенты (проппанты) должны противостоять напряжениям горной породы, удерживая трещину раскрытой после снятия гидравлического давления жидкости разрыва и обеспечивая, таким образом, высокую фильтрационную способность призабойной зоны пласта и дебиты нефти скважин. Обработки скважин проводятся с использованием стандартного нефтепромыслового оборудования и насосной техники. Промысловый опыт ГРП в условиях Верхне-Салымского месторождения (Западная Сибирь) показал его достаточно высокую эффективность. Hydraulic fracturing is a complex technology of well treatment. At the same time it should be considered not only as a means of impact on the bottom-hole zone of the formation, but also as one of the essential elements of the field development system as a whole. Technological schemes of MPG, including with subsequent chemical impact, differ depending on collector properties of processed objects. Their effectiveness is determined by conditions related to filtration characteristics of formations, i. e. permeability coefficients of nearby and remote zones of the object. At the same time, the approach to the design of GRP treatments will be different in low and highly permeable formations and in this regard, competent selection of wells is essential. Various proppantsare pumped into wells to prevent closing of cracks after MPG and to relieve pressure in bottom-hole zone of formation. Proppants (proppants) must withstand rock stresses by holding the fracture open after the hydraulic pressure of the fracturing fluid has been removed, and thus ensuring high filtration capacity of the bottom-hole formation zone and well oil flow rate. Well treatments are carried out using standard oil field equipment and pumping equipment. The field experience of GRP in the conditions of Verkhne-Salymsky field (Western Siberia) showed its rather high efficiency.


2014 ◽  
Vol 915-916 ◽  
pp. 1128-1131
Author(s):  
Yu Sheng Ding ◽  
Shuang Yan Chen ◽  
Jun Xie ◽  
Ju Biao Zhou ◽  
Li Yao Li

Inefficient reserves in fault block belongs to low permeability thin interbed, thus water flooding development process has exposed many contradictions which are serious heterogeneity, large difference of suction of interlayer. Entering the water injection development, the injected water which rapidly advance along the high permeability channel causes water channeling and water flooding, which intenses development contradictions between layers. The reservoir numerical simulation technology on computer can reappear the movement of water and gas in the underground reservoir development process and describes the underground remaining oil distribution of inefficient reserves in complex fault block, which summarizes the remaining oil distribution rule of the water flooding development for complex fault block of inefficient reserves and provides basis for the establishment of oil field development adjustment scheme.


2018 ◽  
Vol 233 ◽  
pp. 00015 ◽  
Author(s):  
Erik Baalbergen ◽  
Wim Lammen ◽  
Nikita Noskov ◽  
Pier-Davide Ciampa ◽  
Erwin Moerland

Airlines need to continuously extend and modernise their fleets, to keep up with the challenges of air-travel growth, competition, green, safe and secure operations, and growing passenger demands. As a result, the aircraft industry and its supply chain have to manage the growing needs for cost-efficient and complex aircraft in increasingly shorter time. Meanwhile they face their own challenges, such as certification and global competition. Quick evaluation of promising new technologies and concepts facilitates a short time to market. However, the required innovations are costly and risky, and require involvement of many experts from different disciplines and partners. Increasing the level of collaboration within the aircraft industry and its supply chain will be an essential step forward to deal with the challenges. Developing modern aircraft in an increasingly cost and time efficient manner in a collaborative set-up however requires step changes. The EU-funded Horizon2020 project AGILE has developed methods and tools for efficient and cross-organisation collaborative aircraft design, facilitating the rapid evaluation of new technologies and concepts at the early stages of aircraft development. This paper describes the capabilities and illustrates the successful integrated application of the capabilities by means of a collaborative aircraft rudder design evaluation.


2015 ◽  
Vol 137 (03) ◽  
pp. S13-S15
Author(s):  
Phaneendra Kondapi

This article explores various aspects of flow assurance in subsea developments. Flow assurance is an understanding of multiphase flow fluid dynamics and analyses, an ability to identify flow-related problems using state-of-the-art prediction tools, and the knowledge to develop solutions that eliminate, mitigate or remediate flow-related issues encountered in subsea systems. Flow assurance is reliable, safe and cost-efficient management of hydrocarbons from reservoir to export without any flow-related issues over the life cycle of the oil field. Subsea developments continue to escalate in quantity and complexity as the exploration and production companies ramp up exploration of deep-water and ultra-deep-water reservoirs with complex formations in harsh environments with increased challenges. Some of the technologies under thermal solutions are thermal insulation, direct electric heating and electrically-heated pipe-in-pipe. Oil and gas companies generate revenue from the oil produced. If the oil flow stops, their revenue stops. The more it stops the more they lose cash. Hence it can be termed as cash flow assurance. With fluctuating oil prices and unpredictable production issues, engaging flow assurance at every stage starting with the early phase ensures uninterrupted transportation of reservoir fluid from pore to process facilities in a safe manner and insures cash flow.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1643-1649
Author(s):  
Qi Li ◽  
Ming Qin ◽  
Hong Bo Wang ◽  
Ji Cheng Zhang

Currently most of our oil fields have entered the extra high water cut stage. Accurate prediction of field development dynamic is the foundation of the reasonable, efficient, sustainable oil field development. Prediction of oilfield development index have varieties of methods ,including the law of diminishing water flooding Union law solution, yield component method, multiple regression and so on. In this paper, we take xingnan development zone eight to twelve district extension well network development index prediction as an example, introduces the application of multiple regression method in the prediction of reservoir indicator.


2013 ◽  
Vol 734-737 ◽  
pp. 1440-1444 ◽  
Author(s):  
Shang Ming Shi ◽  
Hua Bin Wei ◽  
Bo Li ◽  
Hong Lou ◽  
Dong Kai Huo

The study on distribution laws of remaining oil in high water cut stage is the difficulty of oil field development in the mid-to late period. Aiming at the long development time of Western Bei 2 area of Saertu oilfield in Daqing Oilfield and its complicated well history conditions undergone water flooding, polymer flooding and steam flooding, the 3D geological static model has been established in this test area based on the study on its structure characteristics and sedimentary features. By applying the method of fine reservoir numerical simulation, the paper completes the numerical simulation of remaining oil in the test area and summarizes types of remaining oil as well as their distribution laws in the test area, which provides a reliable basis for the further deployment and adjustment measures in the oilfield.


1999 ◽  
Vol 39 (1) ◽  
pp. 523
Author(s):  
M.R. Fabian

The combination of characteristics of the Wandoo Oil Field is unusual and presented significant challenges for commercial development of this field. These characteristics are a shallow reservoir, high oil viscosity, thin oil column, unconsolidated sands and very high permeability.A staged development of this field was adopted to enable evaluation of these characteristics, commencing with a 120-day extended production test (EPT). The EPT was further extended to address aquifer support and horizontal well length issues and for commercial reasons. The information gained from the EPT was used to calibrate the full field simulation model, which was used to quantify the benefits of various development scenarios. To date, the reservoir performance has been in accordance with pre-full field development expectations.


2013 ◽  
Vol 655-657 ◽  
pp. 2216-2219
Author(s):  
Xue Fei Li ◽  
Yan Gang Yang

Water injection was a widely used method for oil exploration in China. The defects of water injection process,inject water quality exceed standard, Unreasonable of injection-production ratio and ,invalid of well control measures, during the water flooding process,may lead to These factors may lead to the occurrence of geological oil spill accident. This paper introduced and discussed these key factors which may lead to oil spill accident, in oil field development processes, for risk prevention and environmental protection in water flooding process.


Sign in / Sign up

Export Citation Format

Share Document