A Revised Gassmann Fluid Replacement Model Based on Neutron-Density Logs in Shaly Sandstone Reservoirs

2021 ◽  
pp. 1-13
Author(s):  
Shantanu Chakraborty ◽  
Samit Mondal ◽  
Rima Chatterjee

Summary Fluid-replacement modeling (FRM) is a fundamental step in rock physics scenario modeling. The results help to conduct forward modeling for prediction of seismic signatures. Further, the analysis of the results improves the accuracy of quantitative interpretation and leads to an updated reservoir characterization. While modeling for different possible reservoir pore fluid scenarios, the quality of the results largely depends on the accuracy of the FRM. Gassmann (1951)fluid-replacement modeling (GFRM) is one of the widely adopted methods across the oil and gas industry. However, the Gassmann method assumes the reservoir as clean sandstone with connected pores. This causes Gassmann fluid-replacement results to overestimate the fluid effect in shaly sandstones. This study uses neutron and density logs to correct the overestimated results in shaly sandstone reservoirs. Due to the nature of these recordings, both of these log readings have close dependencies on the presence of shale. When the logs are plotted in a justified scale, the differences between the logs provide an accurate measurement of shaliness within the reservoir. The study has formulated a weight factor using the logs, which has further been used to scale the overestimated Gassmann-modeled fluid effect. The results of the revised method are independent of type of clay presence and associated effective porosity. Moreover, the corrected FRM results from the revised Gassmann method shows good agreement with rock physical interpretation of shaly sandstone reservoirs.

2021 ◽  
Author(s):  
Edet Ita Okon ◽  
Dulu Appah

Abstract Application of artificial intelligence (AI) and machine learning (ML) is becoming a new addition to the traditional reservoir characterization, petrophysics and monitoring practice in oil and gas industry. Accurate reservoir characterization is the driver to optimize production performance throughout the life of a field. Developing physics-based data models are the key for applying ML techniques to solve complex reservoir problems. The main objective of this study is to apply machine learning techniques in reservoir Characterization. This was achieved via machine learning algorithm using permeability and porosity as the investigative variables. Permeability and porosity of a reservoir were predicted using machine learning technique with the aid of XLSTAT in Excel. The general performance and predictability of the technique as applied to permeability and porosity predictions were compared. From the results obtained, it was observed that the machine learning model used was able to predict about 98% of the permeability and 81% of the porosity. The results from Al and ML will reinforce reservoir engineers to carry out effective reservoir characterization with powerful algorithms based on machine learning techniques. Hence, it can therefore be inferred that machine learning approach has the ability to predict reservoir parameters.


SPE Journal ◽  
2016 ◽  
Vol 21 (03) ◽  
pp. 909-927 ◽  
Author(s):  
Klemens Katterbauer ◽  
Ibrahim Hoteit ◽  
Shuyu Sun

Summary Increasing complexity of hydrocarbon projects and the request for higher recovery rates have driven the oil-and-gas industry to look for a more-detailed understanding of the subsurface formation to optimize recovery of oil and profitability. Despite the significant successes of geophysical techniques in determining changes within the reservoir, the benefits from individually mapping the information are limited. Although seismic techniques have been the main approach for imaging the subsurface, the weak density contrast between water and oil has made electromagnetic (EM) technology an attractive complement to improve fluid distinction, especially for high-saline water. This crosswell technology assumes greater importance for obtaining higher-resolution images of the interwell regions to more accurately characterize the reservoir and track fluid-front developments. In this study, an ensemble-Kalman-based history-matching framework is proposed for directly incorporating crosswell time-lapse seismic and EM data into the history-matching process. The direct incorporation of the time-lapse seismic and EM data into the history-matching process exploits the complementarity of these data to enhance subsurface characterization, to incorporate interwell information, and to avoid biases that may be incurred from separate inversions of the geophysical data for attributes. An extensive analysis with 2D and realistic 3D reservoirs illustrates the robustness and enhanced forecastability of critical reservoir variables. The 2D reservoir provides a better understanding of the connection between fluid discrimination and enhanced history matches, and the 3D reservoir demonstrates its applicability to a realistic reservoir. History-matching enhancements (in terms of reduction in the history-matching error) when incorporating both seismic and EM data averaged approximately 50% for the 2D case, and approximately 30% for the 3D case, and permeability estimates were approximately 25% better compared with a standard history matching with only production data.


2021 ◽  
Vol 73 (10) ◽  
pp. 60-60
Author(s):  
Yagna Oruganti

With a moderate- to low-oil-price environment being the new normal, improving process efficiency, thereby leading to hydrocarbon recovery at reduced costs, is becoming the need of the hour. The oil and gas industry generates vast amounts of data that, if properly leveraged, can generate insights that lead to recovering hydrocarbons with reduced costs, better safety records, lower costs associated with equipment downtime, and reduced environmental footprint. Data analytics and machine-learning techniques offer tremendous potential in leveraging the data. An analysis of papers in OnePetro from 2014 to 2020 illustrates the steep increase in the number of machine-learning-related papers year after year. The analysis also reveals reservoir characterization, formation evaluation, and drilling as domains that have seen the highest number of papers on the application of machine-learning techniques. Reservoir characterization in particular is a field that has seen an explosion of papers on machine learning, with the use of convolutional neural networks for fault detection, seismic imaging and inversion, and the use of classical machine-learning algorithms such as random forests for lithofacies classification. Formation evaluation is another area that has gained a lot of traction with applications such as the use of classical machine-learning techniques such as support vector regression to predict rock mechanical properties and the use of deep-learning techniques such as long short-term memory to predict synthetic logs in unconventional reservoirs. Drilling is another domain where a tremendous amount of work has been done with papers on optimizing drilling parameters using techniques such as genetic algorithms, using automated machine-learning frameworks for bit dull grade prediction, and application of natural language processing for stuck-pipe prevention and reduction of nonproductive time. As the application of machine learning toward solving various problems in the upstream oil and gas industry proliferates, explainable artificial intelligence or machine-learning interpretability becomes critical for data scientists and business decision-makers alike. Data scientists need the ability to explain machine-learning models to executives and stakeholders to verify hypotheses and build trust in the models. One of the three highlighted papers used Shapley additive explanations, which is a game-theory-based approach to explain machine-learning outputs, to provide a layer of interpretability to their machine-learning model for identification of identification of geomechanical facies along horizontal wells. A cautionary note: While there is significant promise in applying these techniques, there remain many challenges in capitalizing on the data—lack of common data models in the industry, data silos, data stored in on-premises resources, slow migration of data to the cloud, legacy databases and systems, lack of digitization of older/legacy reports, well logs, and lack of standardization in data-collection methodologies across different facilities and geomarkets, to name a few. I would like to invite readers to review the selection of papers to get an idea of various applications in the upstream oil and gas space where machine-learning methods have been leveraged. The highlighted papers cover the topics of fatigue dam-age of marine risers and well performance optimization and identification of frackable, brittle, and producible rock along horizontal wells using drilling data. Recommended additional reading at OnePetro: www.onepetro.org. SPE 201597 - Improved Robustness in Long-Term Pressure-Data Analysis Using Wavelets and Deep Learning by Dante Orta Alemán, Stanford University, et al. SPE 202379 - A Network Data Analytics Approach to Assessing Reservoir Uncertainty and Identification of Characteristic Reservoir Models by Eugene Tan, the University of Western Australia, et al. OTC 30936 - Data-Driven Performance Optimization in Section Milling by Shantanu Neema, Chevron, et al.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


2011 ◽  
pp. 19-33
Author(s):  
A. Oleinik

The article deals with the issues of political and economic power as well as their constellation on the market. The theory of public choice and the theory of public contract are confronted with an approach centered on the power triad. If structured in the power triad, interactions among states representatives, businesses with structural advantages and businesses without structural advantages allow capturing administrative rents. The political power of the ruling elites coexists with economic power of certain members of the business community. The situation in the oil and gas industry, the retail trade and the road construction and operation industry in Russia illustrates key moments in the proposed analysis.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


Sign in / Sign up

Export Citation Format

Share Document