Low Resistivity Pay Carbonates: A Practical Approach to Quantify Water Saturation Using a Modified Archie's Model

2021 ◽  
Author(s):  
Ramsin Eyvazzadeh ◽  
Abdullatif Al-Omair ◽  
Majed Kanfar ◽  
Achong Christon

Abstract A detailed description of a modified Archie's equation is proposed to accurately quantify water saturation within low resistivity/low contrast pay carbonates. The majority of previous work on low resistivity/low contrast reservoirs focused on clastics, namely, thin beds and/or clay effects on resistivity measurements. Recent publications have highlighted a "non-Archie" behavior in carbonates with complex pore structures. Several theoretical models were introduced, but new practical applications were not derived to solve this issue. Built upon previous theoretical research in a holistic approach, new models and workflows have been developed. Specifically, utilizing a combination of machine learning algorithms, nuclear magnetic resonance (NMR), core and geological data, field specific calibrated equations to compute water saturation (Sw) in complex carbonate formations are presented. Essentially, these new models partition the porosity into pore spaces and calculate their relative contribution to water saturation in each pore space. These calibrated equations robustly produce results that have proven invaluable in pay identification, well placement, and have greatly enhanced the ability to manage these types of reservoirs. This paper initially explains the theory behind the development of the analysis illustrating workflows and validation techniques used to qualify this methodology. A key benefit performing this research is the utilization of machine-learning algorithms to predict NMR derived values in wells that do not have NMR data. Several examples explore where results of this analysis are compared to dynamic testing, formation testing and laboratory measured samples to validate and demonstrate the utility of this new analysis.

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 143 ◽  
Author(s):  
Ruidong Wu ◽  
Bing Liu ◽  
Ping Fu ◽  
Junbao Li ◽  
Shou Feng

Matrix multiplication is a critical time-consuming processing step in many machine learning applications. Due to the diversity of practical applications, the matrix dimensions are generally not fixed. However, most matrix calculation methods, based on field programmable gate array (FPGA) currently use fixed matrix dimensions, which limit the flexibility of machine learning algorithms in a FPGA. The bottleneck lies in the limited FPGA resources. Therefore, this paper proposes an accelerator architecture for matrix computing method with changeable dimensions. Multi-matrix synchronous calculation concept allows matrix data to be processed continuously, which improves the parallel computing characteristics of FPGA and optimizes the computational efficiency. This paper tests matrix multiplication using support vector machine (SVM) algorithm to verify the performance of proposed architecture on the ZYNQ platform. The experimental results show that, compared to the software processing method, the proposed architecture increases the performance by 21.18 times with 9947 dimensions. The dimension is changeable with a maximum value of 2,097,151, without changing hardware design. This method is also applicable to matrix multiplication processing with other machine learning algorithms.


2021 ◽  
Author(s):  
Jinwoo Lee ◽  
Minsu Kwon ◽  
Youngjun Hong

Abstract In the oil and gas exploration process, understanding the hydrocarbon distribution of a reservoir is important. Well-log and core sample data such as porosity and water saturation are widely used for this purpose. With porosity and water saturation, we can calculate hydrocarbon volume more accurately than using well-log solely. However, as obtaining core sample data is expensive and time-consuming, predicting it with well-log can be a valuable solution for early-stage exploration since acquiring well-log is relatively economic and swift. Recently, numerous studies applied machine learning algorithms to predict core data from well-log. To the best of our knowledge, most works provide point estimation without probabilistic distribution modeling. In this paper, we developed a probabilistic deep neural network to provide uncertainty via confidence interval. Besides, we employed normalizing flows and multi-task learning to improve prediction accuracy. With this approach, we present the model's uncertainty that can be reliable information for decision making. Furthermore, we demonstrate our model outperforms other supervised machine learning algorithms regards to prediction accuracy.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1290-P
Author(s):  
GIUSEPPE D’ANNUNZIO ◽  
ROBERTO BIASSONI ◽  
MARGHERITA SQUILLARIO ◽  
ELISABETTA UGOLOTTI ◽  
ANNALISA BARLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document