Surfactant-Polymer Formulations for EOR in High Temperature High Salinity Carbonate Reservoirs

2021 ◽  
Author(s):  
Mauricio Sotomayor ◽  
Hassan Alshaer ◽  
Xiongyu Chen ◽  
Krishna Panthi ◽  
Matthew Balhoff ◽  
...  

Abstract Harsh conditions, such as high temperature (>100 oC) and high salinity (>50,000 ppm TDS), can make the application of chemical enhanced oil recovery (EOR) challenging by causing many surfactants and polymers to degrade. Carbonate reservoirs also tend to have higher concentrations of divalent cations as well as positive surface charges that contribute to chemical degradation and surfactant adsorption. The objective of this work is to develop a surfactant-polymer (SP) formulation that can be injected with available hard brine, achieve ultra-low IFT in these harsh conditions, and yield low surfactant retention. Phase behavior experiments were performed to identify effective SP formulations. A combination of anionic and zwitterionic surfactants, cosolvents, brine, and oil was implemented in these tests. High molecular weight polymer was used in conjunction with the surfactant to provide a high viscosity and stable displacement during the chemical flood. Effective surfactant formulations were determined and five chemical floods were performed to test the oil recovery potential. The first two floods were performed using sandpacks from ground Indiana limestone while the other three floods used Indiana limestone cores. The sandpack experiments showed high oil recovery proving the effectiveness of the formulations, but the oil recovery was lower in the cores due to complex pore structure. The surfactant retention was high in the sandpacks, but it was lower in Indiana Limestone cores (0.29-0.39 mg/gm of rock). About 0.4 PV of surfactant slug was enough to achieve the oil recovery. A preflush of sodium polyacrylate improved the oil recovery.

2015 ◽  
Author(s):  
Syed Mohamid Raza Quadri ◽  
Li Jiran ◽  
Mohammad Shoaib ◽  
Muhammad Rehan Hashmet ◽  
Ali M. AlSumaiti ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2822-2840 ◽  
Author(s):  
Pengfei Dong ◽  
Maura C. Puerto ◽  
Kun Ma ◽  
Khalid Mateen ◽  
Guangwei Ren ◽  
...  

Summary Oil recovery in many carbonate reservoirs is challenging because of unfavorable conditions, such as oil–wet surface wettability, high reservoir heterogeneity, and high brine salinity. We present the feasibility and injection–strategy investigation of ultralow–interfacial–tension (IFT) foam in a high–temperature (greater than 80°C), ultrahigh–formation–salinity [greater than 23% total dissolved solids (TDS)] fractured oil–wet carbonate reservoir. Because a salinity gradient is generated between injection seawater (SW) (4.2% TDS) and formation brine (FB) (23% TDS), a frontal–dilution map was created to simulate frontal–displacement processes and thereafter it was used to optimize surfactant formulations. IFT measurements and bulk–foam tests were also conducted to study the salinity–gradient effect on the performance of ultralow–IFT foam. Ultralow–IFT foam–injection strategies were investigated through a series of coreflood experiments in both homogeneous and fractured oil–wet core systems with initial oil/brine two–phase saturation. The representative fractured system included a well–defined fracture by splitting the core sample lengthwise. A controllable initial oil/brine saturation in the matrix can be achieved by closing the fracture with a rubber sheet at high confining pressure. The surfactant formulation achieved ultralow IFT (magnitude of 10−2 to 10−3 mN/m) with the crude oil at the displacement front and good foamability at underoptimal conditions. Both ultralow–IFT and foamability properties were found to be sensitive to the salinity gradient. Ultralow–IFT foam flooding achieved more than 50% incremental oil recovery compared with waterflooding in fractured oil–wet systems because of the selective diversion of ultralow–IFT foam. This effect resulted in a crossflow near the foam front, with surfactant solution (or weak foam) primarily diverted from the fracture into the matrix before the foam front, and oil/high–salinity brine flowing back to the fracture ahead of the front. The crossflow of oil/high–salinity brine from the matrix to the fracture was found to create challenges for foam propagation in the fractured system by forming Winsor II conditions near the foam front and hence killing the existing foam. It is important to note that Winsor II conditions should be avoided in the ultralow–IFT foam process to ensure good foam propagation and high oil–recovery efficiency. Results in this work contributed to demonstrating the technical feasibility of ultralow–IFT foam in high–temperature, ultrahigh–salinity fractured oil–wet carbonate reservoirs and investigated the injection strategy to enhance the low–IFT foam performance. The ultralow–IFT formulation helped to mobilize the residual oil for better displacement efficiency and reduce the unfavorable capillary entry pressure for better sweep efficiency. The selective diversion of foam makes it a good candidate for a mobility–control agent in a fractured system for better sweep efficiency.


SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 646-655 ◽  
Author(s):  
Gaurav Sharma ◽  
Kishore K. Mohanty

Summary The goal of this work was to change the wettability of a carbonate rock from mixed-wet toward water-wet at high temperature and high salinity. Three types of surfactants in dilute concentrations (<0.2 wt%) were used. Initial surfactant screening was performed on the basis of aqueous stability at these harsh conditions. Contact-angle experiments on aged calcite plates were conducted to narrow the list of surfactants, and spontaneous-imbibition experiments were conducted on field cores for promising surfactants. Secondary waterflooding was carried out in cores with and without the wettability-altering surfactants. It was observed that most but not all surfactants were aqueous-unstable by themselves at these harsh conditions. Dual-surfactant systems, mixtures of a nonionic and a cationic surfactant, increased the aqueous stability. Some of the dual-surfactant systems proved effective for wettability alteration and could recover could recover 70 to 80% OOIP (original oil in place) during spontaneous imbibition. Secondary waterflooding with the wettability-altering surfactant increased the oil recovery over the waterflooding without the surfactants (from 29 to 40% of OOIP).


2021 ◽  
Author(s):  
S.A. Baloch ◽  
J.M. Leon ◽  
S.K. Masalmeh ◽  
D. Chappell ◽  
J. Brodie ◽  
...  

Abstract Over the last few years, ADNOC has systematically investigated a new polymer-based EOR scheme to improve sweep efficiency in high temperature and high salinity (HTHS) carbonate reservoirs in Abu Dhabi (Masalmeh et al., 2014). Consequently, ADNOC has developed a thorough de-risking program for the new EOR concept in these carbonate reservoirs. The de-risking program includes extensive laboratory experimental studies and field injectivity tests to ensure that the selected polymer can be propagated in the target reservoirs. A new polymer with high 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) content was identified, based on extensive laboratory studies (Masalmeh, et al., 2019, Dupuis, et al., 2017, Jouenne 2020), and an initial polymer injectivity test (PIT) was conducted in 2019 at 250°F and salinity >200,000 ppm, with low H2S content (Rachapudi, et al., 2020, Leon and Masalmeh, 2021). The next step for ADNOC was to extend polymer application to harsher field conditions, including higher H2S content. Accordingly, a PIT was designed in preparation for a multi-well pilot This paper presents ADNOC's follow-up PIT, which expands the envelope of polymer flooding to dissolve H2S concentrations of 20 - 40 ppm to confirm injectivity at representative field conditions and in situ polymer performance. The PIT was executed over five months, from February 2021 to July 2021, followed by a chase water flood that will run until December 2021. A total of 108,392 barrels of polymer solution were successfully injected during the PIT. The extensive dataset acquired was used to assess injectivity and in-depth mobility reduction associated with the new polymer. Preliminary results from the PIT suggest that all key performance indicators have been achieved, with a predictable viscosity yield and good injectivity at target rates, consistent with the laboratory data. The use of a down-hole shut-in tool (DHSIT) to acquire pressure fall-off (PFO) data clarified the near-wellbore behaviour of the polymer and allowed optimisation of the PIT programme. This paper assesses the importance of water quality on polymer solution preparation and injection performance and reviews operational data acquired during the testing period. Polymer properties determined during the PIT will be used to optimise field and sector models and will facilitate the evaluation of polymer EOR in other giant, heterogeneous carbonate reservoirs, leading to improved recovery in ADNOC and Middle East reservoirs.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Huang Zhiyu ◽  
Lu Hongsheng ◽  
Zhang Tailiang

Abstract In order to enhance oil recovery in high-temperature and high-salinity oil reservoirs, the copolymeric microspheres containing acrylamide (AM), acrylonitrile (AN) and AMPS was synthesized by inverse suspension polymerization. The copolymeric microsphere was very uniform and the size could be changed according to the condition of polymerization. The lab-scale studies showed that the copolymeric microsphere exhibit good salt-tolerance and thermal-stability when immersed in 20×105 mg/L NaCl(or KCl) solution, 7500 mg/L CaCl2 (or MgCl2) solution or 2000 mg/L FeCl3 solution, respectively. The copolymeric microsphere showed satisfactory absorbency rates. The sand-pipes experiments confirmed that the average toughness index was 1.059. It could enhance the oil recovery by about 3% compared with the corresponding irregular copolymeric particle.


Sign in / Sign up

Export Citation Format

Share Document