A Comprehensive Project of Thermal, Gas and Chemical EOR Method Application for Bazhenov Shale Formation

2021 ◽  
Author(s):  
Alexandra Ushakova ◽  
Elena Mukhina ◽  
Alexandra Scerbacova ◽  
Aman Turakhanov ◽  
Denis Bakulin ◽  
...  

Abstract The article describes the development aimed at a comprehensive study for enhanced oil recovery methods (EOR) of the Bazhenov shale oil formation. Potentially effective technologies for low-permeable reservoirs are under consideration: injection of associated petroleum gas in the mode of miscible displacement to recover light oil; injection of the surfactants water solutions, to separate sorbed hydrocarbons from the rock and change core wettability; and heating technologies to convert solid hydrocarbons into liquid and gaseous, and recover. The project explore potentially effective EOR technologies and their influence on the various types of hydrocarbons of the shale Bazhenov formation: mobile oil in closed pores, sorbed and solid (kerogen) hydrocarbons. Experimental studies were carried out: the selection of the gases composition, the selection of surfactant compositions, the study of the possibility of thermal exposure by over-heated water injection. The project is currently at the stage of determining the effectiveness of each method, selecting a technology for specific field conditions and identifying which hydrocarbon resources each method is aimed at extracting.

2021 ◽  
Author(s):  
Chaitanya Behera ◽  
Sandip Mahajan ◽  
Carlos Annia ◽  
Mahmood Harthi ◽  
Jane-Frances Obilaja ◽  
...  

Abstract This paper presents the results of a comprehensive study carried out to improve the understanding of deep bottom-up water injection, which enabled optimizing the recovery of a heavy oil field in South Oman. Understanding the variable water injection response and the scale of impact on oil recovery due to reservoir heterogeneity, operating reservoir pressure and liquid offtake management are the main challenges of deep bottoms-up water injection in heavy oil fields. The offtake and throughput management philosophy for heavy oil waterflood is not same as classical light oil. Due to unclear understanding of water injection response, sometimes the operators are tempted to implement alternative water injection trials leading to increase in the risk of losing reserves and unwarranted CAPEX sink. There are several examples of waterflood in heavy oil fields; however, very few examples of deep bottom water injection cases are available globally. The field G is one of the large heavy oil fields in South Oman; the oil viscosity varies between 250cp to 1500cp. The field came on-stream in 1989, but bottoms-up water-injection started in 2015, mainly to supplement the aquifer influx after 40% decline of reservoir pressure. After three years of water injection, the field liquid production was substantially lower than predicted, which implied risk on the incremental reserves. Alternative water injection concepts were tested by implementing multiple water injection trials apprehending the effectiveness of the bottoms-up water injection concept. A comprehensive integrated study including update of geocellular model, full field dynamic simulation, produced water re-injection (PWRI) model and conventional field performance analysis was undertaken for optimizing the field recovery. The Root Cause Analysis (RCA) revealed many reasons for suboptimal field performance including water injection management, productivity impairment due to near wellbore damage, well completion issues, and more importantly the variable water injection response in the field. The dynamic simulation study indicated negligible oil bank development due to frontal displacement and no water cut reversal as initial response to the water injection. Nevertheless, the significance of operating reservoir pressure, liquid offtake and throughput management impact on oil recovery cann't be precluded. The work concludes that the well reservoir management (WRM) strategy for heavy oil field is not same as the classical light oil waterflood. Nevertheless, the reservoir heterogeneity, oil column thickness and saturation history are also important influencing factors for variable water injection response in heavy oil field.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2346
Author(s):  
Mirosław Wojnicki ◽  
Jan Lubaś ◽  
Marcin Warnecki ◽  
Jerzy Kuśnierczyk ◽  
Sławomir Szuflita

Crucial oil reservoirs are located in naturally fractured carbonate formations and are currently reaching a mature phase of production. Hence, a cost-effective enhanced oil recovery (EOR) method is needed to achieve a satisfactory recovery factor. The paper focuses on an experimental investigation of the efficiency of water alternating sour and high-nitrogen (~85% N2) natural gas injection (WAG) in mixed-wetted carbonates that are crucial reservoir rocks for Polish oil fields. The foam-assisted water alternating gas method (FAWAG) was also tested. Both were compared with continuous water injection (CWI) and continuous gas injection (CGI). A series of coreflooding experiments were conducted within reservoir conditions (T = 126 ℃, P = 270 bar) on composite cores, and each consisted of four reservoir dolomite core plugs and was saturated with the original reservoir fluids. In turn, some of the experiments were conducted on artificially fractured cores to evaluate the impact of fractures on recovery efficiency. The performance evaluation of the tested methods was carried out by comparing oil recoveries from non-fractured composite cores, as well as fractured. In the case of non-fractured cores, the WAG injection outperformed continuous gas injection (CGI) and continuous water injection (CWI). As expected, the presence of fractures significantly reduced performance of WAG, CGI and CWI injection modes. In contrast, with regard to FAWAG, deployment of foam flow in the presence of fractures remarkably enhanced oil recovery, which confirms the possibility of using the FAWAG method in situations of premature gas breakthrough. The positive results encourage us to continue the research of the potential uses of this high-nitrogen natural gas in EOR, especially in the view of the utilization of gas reservoirs with advantageous location, high reserves and reservoir energy.


2020 ◽  
Vol 52 (1) ◽  
pp. 307-319 ◽  
Author(s):  
J. Bunce

AbstractThe Douglas Field is located in Block 110/13b in the East Irish Sea. It was the first oilfield to be discovered and produced in the region, having been found in 1990 and brought on stream in January 1996. The field structure comprises a series of north–south-trending, tilted, extensional fault blocks. The reservoir interval is the Triassic Ormskirk Sandstone Formation comprising good quality aeolian and fluvial sandstones. The field is relatively shallow, with the top reservoir at c. 2120 ft true vertical depth subsea. The hydrocarbon is a light oil of 44°API gravity with a maximum column height of c. 400 ft. The Douglas Field contains an estimated stock tank oil in place of 248 MMbbl and was developed with 22 wells: 15 producers, six water injectors and a single sour gas and condensate disposal well. Electric submersible pumps are installed in oil producers for artificial lift and water injection was utilized from field start-up for pressure maintenance. A water-alternating-gas pilot was implemented on the field in 2017 as an enhanced oil recovery scheme. The field currently produces at a rate of c. 4000 bopd, with approximately 90% water cut. The field has produced 103 MMbbl to date, giving a current oil recovery of c. 41%.


2019 ◽  
Vol 8 (2) ◽  
pp. 55-66
Author(s):  
Madi Abdullah Naser ◽  
Omar Azouza

The greater demand for crude oil, the increased difficulty of discovering new reservoirs, and the desire to reduce dependence on imports have emphasized the need for enhanced recovery methods capable of economically producing the crude remaining in known reservoirs. Oil recovery from oil reservoirs may be improved by designing the composition and salinity of water injection. The process is sometimes referred to as sea or smart water injection. In this paper, a Gaberoun Water Leak Injection (GWLI) have been discovered and investigated as a new Libyan chemical EOR in laboratories on relative permeability, wettability, oil recovery, breakthrough, and fractional flow for carbonate and sandstone reservoirs. GWLI has several advantages which are relatively cheap, reliable, and available. GWLI potentially would have a wide range of applications in water injection such as wettability alteration. The equipment and the operating procedures were designed to simulate the reservoir condition. The experimental results indicate that, that the GWLI has caused the increasing of oil recovery in sandstone and carbonate core. The impact of GWLI on oil recovery in sandstone core samples was higher than carbonate core samples. The effect of acidity (pH) of GWLI on oil recovery in sandstone and carbonate core samples was higher when the pH is 5 than when the acidity is 10. Hopefully, the research findings can possibly be useful for references and for operating companies as an important source for understanding and visualizing the effects of pH, permeability, porosity, and wettability on oil recovery in reservoir rock using GWLI.


Author(s):  
Dike Fitriansyah Putra ◽  
Lazuardhy Vozika Futur ◽  
Mursyidah Umar

Waterflood introduces in the oil field a couple of years ago. Several waterflood schemes have been implemented in the fields to get the best incremental oil, such as peripheral injection, pattern waterflood, and etcetera. Many waterflood schemes are not working properly to boost the oil recovery due to unpredicted and unexpected water tide array. Then, the tracer practice started to be used for getting a better picture of the transmissibility reservoir as well as the direction of water pathway. This practice honors the parameters, such pressure, water cut, GOR, and rates. The streamline modeling is used to map the tracer, and it concludes that the selection of location of the injector should be based on the highest oil recovery achieved. Subsequently, the cyclic water injection method is one alternative. Apparently, this approach yields a quantify incremental recovery.  This research utilizes the pressure different approach to figure out the route of water in the formation. The inter-well tracer technique in this modeling study is a tool to review communication between injectors and producers in the existing pattern. Many scenario should be tried to find the best options for the new pattern opportunities. In parallel, a innovative scheme of waterflood technique should be implemented too for escalating oil recovery. The stream pathway observes a new potential of the waterflood scheme. It is called "cyclic injection" scheme.  The novelty of this approach is the ability to solve the poor sweep efficiency due to improper pathway of water influx in the oil bearing".


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 267
Author(s):  
Tomasz Rudnicki

The article presents a new functional method of designing self-compacting concrete (SCC). The assumptions of the functional method of designing self-compacting concrete were based on the double coating assumption (i.e., it was assumed that the grains of coarse aggregate were coated with a layer of cement mortar, whereas the grains of sand with cement paste). The proposed method is composed of four stages, each of which is responsible for the selection of a different component of the concrete mix. The proposed designing procedure takes into consideration such a selection of the mineral skeleton in terms of the volumetric saturation of the mineral skeleton, which prevents the blocking of aggregate grains, and the designed liquid phase demonstrated high structural viscosity and low yield stress. The performed experimental studies, the simulation of the elaborated mathematical model fully allowed for the verification of the theoretical assumptions that are the basis for the development of the method of designing self-compacting concrete.


Sign in / Sign up

Export Citation Format

Share Document