Creating the Integrated Model for Conceptual Engineering of Reservoir Management and Field Facilities Construction – Experience of Tazovskoe Oil and Gas-Condensate Field.

2021 ◽  
Author(s):  
Artem Igorevich Varavva ◽  
Renat Timergaleevich Apasov ◽  
Dmitry Alexeyevich Samolovov ◽  
Artem Viktorovich Elesin ◽  
Gaidar Timergaleevich Apasov ◽  
...  

Abstract The paper describes the experience of building a full-field integrated model (PK1 reservoir) of the Tazovskoye field, including a model of the reservoir, wells, and a gathering network, taking into account the external transportation system. In order to integrate the features of the field, such as the simultaneous development of a thin oil rim and a gas cap, high growth rates of the gas-oil ratio, oil wells - both ESP-operated and flowing, algorithms and tools have been developed, which are discussed in the paper. The results of the integrated model runs are given, main features of the solutions are highlighted.

2012 ◽  
Vol 524-527 ◽  
pp. 1615-1619
Author(s):  
Heng Song ◽  
Lun Zhao ◽  
Jian Xin Li ◽  
Kou Shi

The development of gas-oil reservoir with condensate gas is more difficult than pure gas reservoir or oil reservoir. This article gives the example of G oil reservoir the development of gas cap and oil rim. According to the characteristic of the oil developing and the results of numerical simulation, the rules for oil and gas developing and developing time have been defined, by which the recoveries of gas, oil, and condensate oil will reach a significantly high level.


2006 ◽  
Vol 9 (06) ◽  
pp. 688-697 ◽  
Author(s):  
Mahmoud Jamiolahmady ◽  
Ali Danesh ◽  
D.H. Tehrani ◽  
Mehran Sohrabi

Summary It has been demonstrated, first by this laboratory and subsequently by other researchers, that the gas and condensate relative permeability can increase significantly by increasing rate, contrary to the common understanding. There are now a number of correlations in the literature and commercial reservoir simulators accounting for the positive effect of coupling and the negative effect of inertia at near-wellbore conditions. The available functional forms estimate the two effects separately and include a number of parameters, which should be determined with measurements at high-velocity conditions. Measurements of gas/condensate relative permeability at simulated near-wellbore conditions are very demanding and expensive. Recent experimental findings in this laboratory indicate that measured gas/condensate relative permeability values on cores with different characteristics become more similar if expressed in terms of fractional flow instead of the commonly used saturation. This would lower the number of rock curves required in reservoir studies. Hence, we have used a large data bank of gas/condensate relative permeability measurements to develop a general correlation accounting for the combined effect of coupling and inertia as a function of fractional flow. The parameters of the new correlation are either universal, applicable to all types of rocks, or can be determined from commonly measured petrophysical data. The developed correlation has been evaluated by comparing its prediction with the gas/condensate relative permeability values measured at near-wellbore conditions on reservoir rocks not used in its development. The results are quite satisfactory, confirming that the correlation can provide reliable information on variations of relative permeability at near-wellbore conditions with no requirement for expensive measurements. Introduction The process of condensation around the wellbore in a gas/condensate reservoir, when the pressure falls below the dewpoint, creates a region in which both gas and condensate phases flow. The flow behavior in this region is controlled by the viscous, capillary, and inertial forces. This, along with the presence of condensate in all the pores, dictates a flow mechanism that is different from that of gas/oil and gas/condensate in the bulk of the reservoir (Danesh et al. 1989). Accurate determination of gas/condensate relative permeability (kr) values, which is very important in well-deliverability estimates, is a major challenge and requires an approach different from that for conventional gas/oil systems. It has been widely accepted that relative permeability (kr) values at low values of interfacial tension (IFT) are strong functions of IFT as well as fluid saturation (Bardon and Longeron 1980; Asar and Handy 1988; Haniff and Ali 1990; Munkerud 1995). Danesh et al. (1994) were first to report the improvement of the relative permeability of condensing systems owing to an increase in velocity as well as that caused by a reduction in IFT. This flow behavior, referred to as the positive coupling effect, was subsequently confirmed experimentally by other investigators (Henderson et al. 1995, 1996; Ali et al. 1997; Blom et al. 1997). Jamiolahmady et al. (2000) were first to study the positive coupling effect mechanistically capturing the competition of viscous and capillary forces at the pore level, where there is simultaneous flow of the two phases with intermittent opening and closure of the gas passage by condensate. Jamiolahmady et al. (2003) developed a steady-dynamic network model capturing this flow behavior and predicted some kr values, which were quantitatively comparable with the experimentally measured values.


2020 ◽  
Author(s):  
Renat Timergaleevich Apasov ◽  
Gaidar Timergaleevich Apasov ◽  
Artem Igorevich Varavva ◽  
Dmitriy Vadimovich Vinogradov ◽  
Fedor Igorevich Polkovnikov ◽  
...  
Keyword(s):  

Author(s):  
Sh. Nigamatov ◽  
Л.Р. Ismagilova ◽  
S. Andronov ◽  
A. Markov ◽  
А.Н. Boshchenko ◽  
...  

The oil rim reserves development suggests complexity in maintaining the balance of gas and oil withdrawals from the reservoir, choosing the optimal well design and geosteering, justifying well operation conditions, etc. In addition, gas and oil reservoir can be complicated by diagenetic alterations of deposits, blocked structure, abnormal thermobaric conditions. The paper presents the results of conceptual approach to the Botuobinskiy horizon’s oil rim development design at the Chayandinskoye oil and gas condensate field with the presence of the above complications. This experience can be applied to assess the majority of fields in Eastern Siberia.


2021 ◽  
Author(s):  
Bondan Bernadi ◽  
Ihab Nabil Mohamed ◽  
Ahmed Mohamed Al Bairaq ◽  
Mariam Ahmed Al Hosani ◽  
Azer Abdullayev ◽  
...  

Abstract A comprehensive study of a giant onshore Abu Dhabi gas field using a next-generation commercial numerical simulator has been conducted. The objective was to identify the distribution and track the movement of the gas condensate in the reservoir, and to develop strategies to minimize the condensate drop-out and improve condensate recovery from the field. The field contains a large gas cap and an oil rim. We have identified the distribution of the gas condensate throughout the reservoir and were able to track its movement using the advanced fluid tracking option in the simulator. Once the gas condensate drop-out regions in the reservoir are identified, sensitivity runs with localized changes are carried out to improve the recovery from the reservoir. The strategies to mitigate drop-out include adding infill wells, drilling multi-lateral wells, reinjecting CO2 and dry gas into the reservoir, and hydraulic fracturing near the well bore. We were able to track the distribution of the condensate throughout the reservoir and identified key condensate drop-out regions. Adding infill wells improved the recovery of the condensate. Implementing multi-lateral wells also showed improved condensate recovery in the field. Hydraulic fracturing near the wellbore reduced condensate banking near the wellbore. Injecting dry gas improved the condensate recovery by a re-vaporization process where the liquid condensate is absorbed by dry gas. This paper discusses a comprehensive study on tracking the condensate distribution in a giant onshore field using a commercial simulator. The authors have performed a thorough investigation to identify an optimal condensate recovery strategy for the field, by comparing various recovery strategies using the full field reservoir simulation model.


Author(s):  
Oluwasanmi Olabode ◽  
Sunday Isehunwa ◽  
Oyinkepreye Orodu ◽  
Daniel Ake

AbstractThin oil rim reservoirs are predominantly those with pay thickness of less than 100 ft. Oil production challenges arise due to the nature of the gas cap and aquifer in such reservoirs and well placement with respect to the fluid contacts. Case studies of oil rim reservoir and operational properties from the Niger-Delta region are used to build classic synthetic oil rim models with different reservoir parameters using a design of experiment. The black oil simulation model of the ECLIPSE software is activated with additional reservoir properties and subsequently initialized to estimate initial oil and gas in place. To optimize hydrocarbon production, 2 horizontal wells are initiated, each to concurrently produce oil and gas. Well placements of (0.5 ft., 0.25 ft. and 0.75 ft.) are made with respect to the pay thickness and then to the fluid contacts. The results show that for oil rim with bigger aquifers, an oil recovery of 8.3% is expected when horizontal wells are placed at 0.75 ft. of the pay thickness away from the gas oil contact, 8.1% oil recovery in oil rims with larger gas caps with completions at 0.75 ft. of the pay zone from the gas oil contacts, 6% oil recovery with relatively small gas caps and aquifer and 9.3% from oil rims with large gas caps and aquifers, with completions at mid-stream of the pay zone.


2021 ◽  
Vol 5 (4) ◽  
pp. 288-296
Author(s):  
A. A. Feizullaev

Azerbaijan is one of the oldest oil and gas provinces, where more than 2 bln tons of oil have been extracted over more than a century. At present, the oil production is declining and mainly determined by production from the Azeri-Chirag-Guneshli offshore block (AChG). Compared to oil, the opportunities for further growing natural gas reserves and production are very promising. For the latest years, a number of large gas condensate fields have been discovered in the deep-water part of South Caspian Sea, such as Shakh-Deniz, Apsheron, Umid. There are a number of prospects that have not yet been drilled in this part of the sea basin. The paper assesses their prospectivity, substantiates the priority exploration targets and, on the basis of the statistical analysis of the quantitative gas/oil ratio data for many other Azerbaijanian and world basins, an attempt is made to assess the reserves in the prospects. The total recoverable oil reserves in Azerbaijan are estimated at 3.5 bln tons, of which slightly above 2 bln tons have already been extracted. Based on the statistically estimated ratio between the volumes of gas and oil in various basins of the world, including Azerbaijan, the total possible natural gas reserves in Azerbaijan are estimated at about 4 trillion m3 . This is in agreement with the other available estimates. Of this volume of natural gas, 0.85 trillion m3 has already been extracted, and the approved geological reserves are estimated at 2.55 trillion m3 . Almost 83% of the extracted natural gas belonged to offshore fields. This trend will continue in the future, and, moreover, will be strengthened due to large volumes of gas condensate accumulations in the deepwater part of the basin. In this part of the basin, the most attractive prospects are Mashal, Shafag, and Israfil Huseynov, total reserves of which are expected at 0.6 trillion m3 of natural gas.


2020 ◽  
Author(s):  
Renat Timergaleevich Apasov ◽  
Gaidar Timergaleevich Apasov ◽  
Artem Igorevich Varavva ◽  
Dmitriy Vadimovich Vinogradov ◽  
Fedor Igorevich Polkovnikov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document