Optimization of the Turnaround Time and Quality of Production-Screening Tests in Offshore Fields – Some Case Studies

2021 ◽  
Author(s):  
Stella I. Eyitayo ◽  
Kazeem A. Lawal ◽  
Ibrahim Abdullahi ◽  
Saka Matemilola ◽  
John Akadang ◽  
...  

Abstract Production-screening test (PST) is performed on a reservoir drill-in fluid (RDIF) prior to running any component of the lower completion assembly that is vulnerable to plugging. This is applicable in open-hole completions in which wire-wrapped production screens are deployed. The key objective of a PST is to reduce the risk of plugging key completion components, such as production screens, during subsequent flow back. Hence, a PST increases the chance of preserving well productivity (or injectivity), ultimate recovery and project economics. However, conducting and achieving PST-quality RDIF in offshore fields can be cumbersome, time-consuming, and expensive, yet the quality is not guaranteed. This paper presents the formulation, implementation, and results of a simple strategy to reduce the turnaround time and costs of achieving PST-quality RDIF for applications in offshore fields. Employing a combination of on-the-job assessment, empirical data and expert opinions, the strengths and weaknesses of onsite versus offsite (onshore) options of preparing PST-quality RDIF for offshore operations are evaluated. As a case-study, empirical data from the execution of both onsite and offsite options for an example field are employed for the evaluation. Results of simple cost-time-benefit analysis underscore the robustness and competitiveness of preparing the PST-quality RDIF offsite and transporting same for subsequent test validation and application on the rig. The results of these empirical examples show that the offsite option yields about 75% cost-saving relative to its onsite counterpart. In addition to cost saving, other incremental benefits of the former include (i) significant reduction in rig time and personnel; (ii) improved RDIF quality; and (iii) higher chances of preserving well performance and economics. To increase the success rate, residual risks of the preferred offsite option are outlined, and relevant mitigations provided.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rafael J. A. Cámara ◽  
Christian Merz ◽  
Barbara Wegmann ◽  
Stefanie Stauber ◽  
Roland von Känel ◽  
...  

Objectives. We compared two index screening tests for early diagnosis of functional pain: pressure pain measurement by electronic diagnostic equipment, which is accurate but too specialized for primary health care, versus peg testing, which is cost-saving and more easily manageable but of unknown sensitivity and specificity. Early distinction of functional (altered pain perception; nervous sensitization) from neuropathic or nociceptive pain improves pain management. Methods. Clinicians blinded for the index screening tests assessed the reference standard of this noninferiority diagnostic accuracy study, namely, comprehensive medical history taking with all previous findings and treatment outcomes. All consenting patients referred to a university hospital for nonmalignant musculoskeletal pain participated. The main analysis compared the receiver operating characteristic (ROC) curves of both index screening tests. Results. The area under the ROC curve for peg testing was not inferior to that of electronic equipment: it was at least 95% as large for finger measures (two-sided p=0.038) and at least equally as large for ear measures (two-sided p=0.003). Conclusions. Routine diagnostic testing by peg, which is accessible for general practitioners, is at least as accurate as specialized equipment. This may shorten time-to-treatment in general practices, thereby improving the prognosis and quality of life.


BMJ Open ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. e014626 ◽  
Author(s):  
Stéphanie Barré ◽  
Marc Massetti ◽  
Henri Leleu ◽  
Frédéric De Bels

ObjectiveAccording to the third cancer plan, organised screening (OS) of cervical cancer (CC) among women aged 25–65 years should be implemented in France in the forthcoming years. The most efficient way to implement OS in the French healthcare system is yet to be determined.MethodsA microsimulation model was developed adopting a collective ‘all payers’ perspective. A closed cohort of women eligible for CC screening and representative in terms of age and participation in individual screening (IndScr) by annual Papanicolaou (Pap) testing every 3 years was modelled on a lifetime horizon. Different OS strategies, additive to IndScr with a 61.9% participation rate based on mailed invitations to non-participant women to perform OS were assessed. Similar modalities were applied to OS and IndScr participants. Strategies implied different screening tests (Papanicolaou (Pap) test, human papillomavirus (HPV) test and p16/Ki67 double staining) and OS periodicity.ResultsCompared with IndScr only, all OS strategies were associated with decreased cancer incidence/mortality (from 14.2%/13.5% to 22.9%/25.8%). Most strategies generated extra costs ranging from €37.9 to €1607 per eligible woman. HPV testing every 10 and 5 years were cost saving. HPV tests every 10 and 5 years were the most efficient strategies, generating more survival at lower costs than Pap-based strategies. Compared to IndScr only, an HPV test every 10 years was cost saving. The most effective strategies were p16/Ki67 as primary or HPV positive confirmation tests, with respective incremental cost-effectiveness ratios of €6 541 250 and €101 391 per life year. Pap-based strategies generated intermediary results.ConclusionOS strategies based on the HPV test appear highly efficient. However, our results rely on the assumption that women and practitioners comply with the recommended OS periodicities (3, 5, 10 years). Implementing these OS modalities will require major adaptations to the current CC screening organisation. Pap test-based strategies might be simpler to setup while preparing an appropriate implementation of more efficient OS screening modalities.


Author(s):  
Jay J. Ye ◽  
Michael R. Tan ◽  
Chung H. Shum

Context.— Studies on the adoption of voice recognition in health care have mostly focused on turnaround time and error rate, with less attention paid to the impact on the efficiency of the providers. Objective.— To study the impact of voice recognition on the efficiency of grossing biopsy specimens. Design.— Timestamps corresponding to barcode scanning for biopsy specimen bottles and cassettes were retrieved from the pathology information system database. The time elapsed between scanning a specimen bottle and the corresponding first cassette was the length of time spent on the gross processing of that specimen and is designated as the specimen time. For the first specimen of a case, the specimen time additionally included the time spent on dictating the clinical information. Therefore, the specimen times were divided into the following 2 categories: first-specimen time and subsequent-specimen time. The impact of voice recognition on specimen times was studied using both univariate and multivariate analyses. Results.— Specimen complexity, prosector variability, length of clinical information text, and the number of biopsies the prosector grossed that day were the major determinants of specimen times. Adopting voice recognition had a negligible impact on specimen times. Conclusions.— Adopting voice recognition in the gross room removes the need to hire transcriptionists without negatively impacting the efficiency of the prosectors, resulting in an overall cost saving. Using computer scripting to automatically enter clinical information (received through the electronic order interface) into report templates may potentially increase the grossing efficiency in the future.


2021 ◽  
Author(s):  
Arthur Aslanyan ◽  
Arkady Popov ◽  
Rustem Asmandiyarov ◽  
Andrey Margarit

Abstract The paper shares a 4-years’ experience of "Gazprom Neft" PJSC on Digital Twin Learning Program in training of holistic multidisciplinary petroleum asset management and engineering based on the on-line cloud PetroCup software facility. The objective of the program was to train and test large amounts of managers and engineers with minimum off-work time and motivate self-improvement among the employee. The program includes warm-up videos, immersive master-classes, training courses, discussion clubs and Annual Corporate Championship, with a strong focus on home learning, remote communication, simulation-based exercises and automated testing/certification. The program is divided into Master Development Planning (MDP) and Well & Reservoir Management (WRM) domains which are related to different stages of the petroleum asset lifecycle. The interaction with simulator takes 2-3 days for WRM and 5 days for MDP and engages a multidisciplinary team: asset manager, economist, contract engineer, surface facility engineer, reservoir engineer, geologist, petrophysicist, simulation engineer, well test engineer, well and log analyst and production technologist. The session starts by reading the existing field data and its history and then perform well drilling, completions, workovers, well tests, open-hole and cased-hole logging, manage production and injection targets, build/modify the surface production/injection facilities and receive the fully automated asset response in the form of the field reports, very much in the same way as in real life. Once session is over the simulator generates a detailed debriefing report on team performance in numerous areas: economical, production, injection, reservoir and well performance so that team can understand where it did a good job and where it was not efficient. The current paper shows how this facility has been integrated into the corporate staff capability program, expanded to anchor universities and shed the light to the future perspectives.


2005 ◽  
Vol 127 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Y. Ding ◽  
G. Renard

It is well recognized that near-wellbore formation damage can dramatically reduce well productivities, especially for open hole completed horizontal wells. The economic impact of poor productivity of these wells has pushed toward significant efforts in recent years to study laboratory testing techniques and numerical modeling methods for predicting and controlling drilling-induced formation damage. This paper presents an integrated approach, combining a near-wellbore modeling with laboratory experiments for data acquisition as input for the model, to evaluate the performance of oil and gas wells after drilling-induced formation damage.


2021 ◽  
Vol 7 (2) ◽  
pp. e001137
Author(s):  
Kimberly Harmon ◽  
Anabelle M de St Maurice ◽  
Adam C Brady ◽  
Sankar Swaminathan ◽  
Doug F Aukerman ◽  
...  

ObjectiveTo assess the diagnostic accuracy of antigen compared with reverse transcriptase (RT)-PCR testing in an asymptomatic athlete screening programme and to monitor infection in college athletes.MethodsQuidel Sofia-2 SARS-CoV-2 Antigen Tests were performed daily before sports participation for football, basketball, wrestling and water polo from 29 September 2020 to 28 February 2021. Paired RT-PCR and antigen tests were performed at least once a week. Positive antigen tests were confirmed with RT-PCR.Results81 175 antigen and 42 187 RT-PCR tests were performed, including 23 462 weekly paired antigen/RT-PCR screening tests in 1931 athletes. One hundred and seventy-two athletes had a positive screening RT-PCR (0.4%), of which 83 (48%) occurred on paired testing days. The sensitivity of antigen tests varied with the frequency of RT-PCR testing and prevalence of COVID-19. The sensitivity of antigen testing was 35.7% (95% CI: 17% to 60%) and specificity 99.8% (95% CI: 99.7% to 99.9%) with once-a-week RT-PCR testing after adjusting for school prevalence. Daily antigen testing was similar to RT-PCR testing two to three times a week in identifying infection. Antigen testing identified infection before the next scheduled PCR on 89 occasions and resulted in 234 days where potentially infectious athletes were isolated before they would have been isolated with RT-PCR testing alone. Two athletic-related outbreaks occurred; 86% of total infections were community acquired.ConclusionAntigen testing has high specificity with a short turnaround time but is not as sensitive as RT-PCR. Daily antigen testing or RT-PCR testing two to three times a week is similar. There are benefits and drawbacks to each testing approach.


2021 ◽  
Author(s):  
Majda Jan Mohammad ◽  
Muneer Al Noumani ◽  
Iain Cameron ◽  
Younis Al Masoudi

Abstract BP operates Khazzan & Ghazeer fields in the Sultanate of Oman with the aim to deliver safe, reliable and efficient wells. Efficiencies within drilling fluids design form part of a greater continuous improvement cycle to well delivery cost. With fluids spend contributing to a significant portion of the executed well cost (typically 15 % in Oman), fluids design changes hold the potential to yield positive cost savings (where well performance is maintained). This paper presents the areas of fluids design which were explored to reduce fluids spend as part of the continuous improvement cycle. Combined, the changes to fluids design evolved to reduce the fluids cost of Barik vertical wells to 6% of total well cost. All avenues of fluids design and the costs associated with the fluids operation in Oman were viewed as being in scope for change to maintain overbalance hydrostatic pressure on fluids spend. The methodology employed to reduce fluids spend can be described in four steps as per continuous improvement roadmaps; identify the cost saving project, the key enablers which allow the cost saving to be realized, risk/reward analysis where low risk/high reward projects were accelerated as priority and placed to the front of the queue for field trial and where a trial outcome is positive, the change is introduced permanently to the operation. This process worked well in continuously pushing fluid performance and reducing the fluids spend in Oman. The scope of change to fluids design was wide, with each ‘value adding project’ providing its own cumulative cost benefit. The projects which contributed to significantly reducing the overall fluids spend in Oman focused on personnel, fluid type selection, fluids formulation optimization, wellbore strengthening, fluid consumption and recycling, drilling fluids practice and brine selection. Reductions in fluids spend were accompanied with an improved well performance. Well delivery times being continuously observed to improve throughout the campaign (63 days vs 42 days). Whilst the fluids design is not directly responsible for this outcome, it does highlight that the changes made to fluids design positively influenced the improved well delivery performance. The drilling fluids optimization initiatives resulted in significant time and cost saving thus reduction in overall Barik vertical well drilling cost. Drilling fluids cost is reduced by over 55% without impact on safety and drilling performance.


2021 ◽  
Author(s):  
Luis Peixoto ◽  
Wilfred Nathaniel Provost ◽  
Jesse Thomas Gerber

Abstract Open hole (OH) completions are not very common in the GoM, but the area has seen an uptick in OH wells in recent years, and a few big projects have elected to use the same completion archetype. There are several different ways to complete an OH well, and one of these completion techniques involves running screens across the OH in Drill-In fluid (DIF), displacing the DIF out of the OH with brine, and then setting the packer, before pumping a filter cake breaker, designed to remove the filter cake and restore the reservoir permeability to near pre-drilling levels. A review of past open hole (OH) well completions in GoM revealed that there was an inconsistent action of the breaker on the filter-cake: sometimes the breaker would react quickly, and sometimes there was no noticeable effect. This study led to the development of a new technology to allow better displacements of the OH, with the ultimate objective of reducing initial well skin induced by the drill-in fluid (DIF) and filter cake. It was theorized that the low displacement rates would lead to poor removal of the mud from the OH, in turn leading to a poor breaker action on the DIF filter cake and a long-term impact on well injectivity and increased OPEX, as these wells tend to need an initial stimulation within a short timeframe after initial completion. The approach used was to develop a new tool to allow faster displacement rates, and test it on a trial well, to verify the results and validate this theory. To solve this problem, a new tool was proposed, developed and fully tested in a tight deadline of 6 months. The new module allows up to 9 bpm rates and up to 3,500 psi differential pressure before setting the packer, versus the previous ∼800 psi differential pressure limit, present in all tools in the market, for that casing size (7 5/8"). During the first well trial, the tool allowed a displacement of the OH at double the pump rates obtained in previous wells in the same basin, with similar OH lengths, leading to the smallest volume of contaminated fluid interface seen to date, indicating a much better displacement. Once the well was put online, it achieved an injection rate above expectations, even when the drilled OH interval penetrated significantly less net sands than originally planned. The results on this single well trial seem to corroborate the theory posed, however it is recognized that more data is required to be certain of its results, and that will only come with time, as well performance is measured and compared with other wells that did not use the same technology. The novelty of this new technology is the ability to obtain a better displacement of the OH, leading to a better breaker action and well cleanup in OH completions. Although the trial well was an injector well, the technology is equally applicable to producer wells. The paper will cover the problem description, installation procedures, development and testing of the technology, design aspects of using the technology and the successful implementation in the trial well.


Author(s):  
F. G. Zaki ◽  
E. Detzi ◽  
C. H. Keysser

This study represents the first in a series of investigations carried out to elucidate the mechanism(s) of early hepatocellular damage induced by drugs and other related compounds. During screening tests of CNS-active compounds in rats, it has been found that daily oral administration of one of these compounds at a dose level of 40 mg. per kg. of body weight induced diffuse massive hepatic necrosis within 7 weeks in Charles River Sprague Dawley rats of both sexes. Partial hepatectomy enhanced the development of this peculiar type of necrosis (3 weeks instead of 7) while treatment with phenobarbital prior to the administration of the drug delayed the appearance of necrosis but did not reduce its severity.Electron microscopic studies revealed that early development of this liver injury (2 days after the administration of the drug) appeared in the form of small dark osmiophilic vesicles located around the bile canaliculi of all hepatocytes (Fig. 1). These structures differed from the regular microbodies or the pericanalicular multivesicular bodies. They first appeared regularly rounded with electron dense matrix bound with a single membrane. After one week on the drug, these vesicles appeared vacuolated and resembled autophagosomes which soon developed whorls of concentric lamellae or cisterns characteristic of lysosomes (Fig. 2). These lysosomes were found, later on, scattered all over the hepatocytes.


Sign in / Sign up

Export Citation Format

Share Document