Production Optimization Coupling Multiple Reservoirs and Facilities With Sour Gas Re-Injection for Miscible EOR in South Oman

2021 ◽  
Author(s):  
Kamlesh Kumar ◽  
Varun Pathak ◽  
Pankaj Agrawal ◽  
Zaal Alias ◽  
Tushar Narwal ◽  
...  

Abstract Effective gas utilization is critical to any gas injection development project to maximize recoveries for a given purchase of make-up gas, whilst reducing the Green Gas House (GHG) emissions. This paper describes the use of a fully implicit Integrated Production System Model (IPSM) for two inter-connected production system networks, coupling multiple, critically sour oil reservoirs undergoing Miscible Gas Injection (MGI) for Enhanced Oil Recovery (EOR) using produced sour gas from oil and condensate fields in South Oman. The IPSM model links sixteen reservoir models with varying levels of complexities to the facilities network. Complexities in the facilities include multiple nodal constraints that necessitate the use of an Equation of State model (EOS). The IPSM model honors the gas balance implicitly. Gas flood optimization includes prioritizing low GOR production wells (at reservoir and well level) whilst maintaining reservoir pressure above Minimum Miscibility Pressures (MMP). Development schedule optimization also helps in optimizing the compressor size, the key Capex component. Compositional modeling allows continuous tracking of souring levels at different nodes, providing integrity status of overall production system network. The current IPSM model helps in optimization of schedule for the phased development of the oil reservoirs and eventually the most efficient gas utilization. This has enabled low pressure operation in some reservoirs providing oil at very low unit technical cost while waiting for gas availability. Compositional tracking for H2S helps in operating the facilities within design limits whilst planning future developments to cater to this design. Some key parameters can be parameterized for quick sensitivity analysis for an informed decision making for business opportunities. The production potential of the system is also tracked to ensure there is a cushion in the system to deal with any unexpected changes. This feature helps in planning and optimizing the scheduled turn-around activities for these two inter-connected production system networks. The novelty of this work is collaboration across multiple disciplines, especially the surface and subsurface because of complex interactions between facilities constraints and reservoir performance (associated with produced gas reinjection). Compositional tracking and injection gas apportionment across multiple reservoirs is key to the overall value maximization in this complex development.

2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


1967 ◽  
Vol 7 (01) ◽  
pp. 61-74 ◽  
Author(s):  
Robert C. McFarlane ◽  
T.D. Mueller ◽  
F.G. Miller

Abstract During the process of gas storage in pressure-depleted oil reservoirs, it has been observed that in some instances additional liquid oil is recovered and that the composition of the storage gas is materially altered. A mathematical study was made of the dynamic behavior of such a depleted oil reservoir undergoing gas injection. The important variable considered in this study, not included in previously published work, was that of compositional effects on the phase behavior of two-phase flow. Pressure, saturation and component composition profiles were developed for a linear, horizontal and homogeneous porous medium containing oil and gas but undergoing dry gas injection. Special new techniques were developed to overcome the problems of numerical smoothing which arise in the solution of the equations representing such systems. The method of solution includes the development of partial differential equations describing the behavior of the system, representing these equations by finite difference approximations, making certain simplifying assumptions and, finally, applying methods of numerical analysis with the aid of a high-speed digital computer. In an example calculation, results using the mathematical model are compared with field observations made on a gas storage project in Clay County, Tex. This field project involved a depleted oil reservoir used' for gas storage and gas cycling purposes. As a result of these processes, the reservoir yielded substantial amounts of secondary oil, both in the form of stock tank oil and as vaporized products in the produced gas. The methods derived in this study may be applied to a variety of oil reservoir problems which are dependent on compositional effects. INTRODUCTION In recent years the number of oil reservoirs being used for gas storage purposes has increased greatly, and there has been at least one published account of additional oil recovery resulting from gas cycling a depleted oil reservoir after repressuring with dry gas for storage purposes. Additional oil recovery from oil reservoirs resulting from gas storage operations could become an important secondary recovery process. This is especially true since the use of natural gas in large metropolitan areas continues to increase and more gas storage volume near these areas is needed. These facts provided the motivation for the work reported here. This paper reports on a study of the inter-relations of composition, saturation and pressure changes which occur when hydrocarbon gas is injected into an oil reservoir system. From an understanding of the process, prediction methods may be developed for use in forecasting the secondary recovery products from gas storage operations in oil reservoirs and, consequently, .the economics of such projects can be developed.


Author(s):  
Mvomo Ndzinga Edouard ◽  
Pingchuan Dong ◽  
Chinedu J. Okere ◽  
Luc Y. Nkok ◽  
Abakar Y. Adoum ◽  
...  

AbstractAfter single-gas (SG) injection operations in tight oil reservoirs, a significant amount of oil is still unrecovered. To increase productivity, several sequencing gas injection techniques have been utilized. Given the scarcity of research on multiple-gas alternating injection schemes, this study propose an optimized triple-alternating-gas (TAG) injection for improved oil recovery. The performance of the TAG process was demonstrated through numerical simulations and comparative analysis. First, a reservoir compositional model is developed to establish the properties and composition of the tight oil reservoir; then, a suitable combination for the SG, double alternating gas (DAG), and TAG was selected via a comparative simulation process. Second, the TAG process was optimized and the best case parameters were derived. Finally, based on the oil recovery factors and sweep efficiencies, a comparative simulation for SG, DAG, and TAG was performed and the mechanisms explained. The following findings were made: (1) The DAG and TAG provided a higher recovery factor than the SG injection and based on recovery factor and economic advantages, CO2 + CH4 + H2S was the best choice for the TAG process. (2) The results of the sensitivity analysis showed that the critical optimization factors for a TAG injection scheme are the injection and the production pressures. (3) After optimization, the recovery factor and sweep efficiency of the TAG injection scheme were the best. This study promotes the understanding of multiple-gas injection enhanced oil recovery (EOR) and serves as a guide to field design of gas EOR techniques.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3961
Author(s):  
Haiyang Yu ◽  
Songchao Qi ◽  
Zhewei Chen ◽  
Shiqing Cheng ◽  
Qichao Xie ◽  
...  

The global greenhouse effect makes carbon dioxide (CO2) emission reduction an important task for the world, however, CO2 can be used as injected fluid to develop shale oil reservoirs. Conventional water injection and gas injection methods cannot achieve desired development results for shale oil reservoirs. Poor injection capacity exists in water injection development, while the time of gas breakthrough is early and gas channeling is serious for gas injection development. These problems will lead to insufficient formation energy supplement, rapid energy depletion, and low ultimate recovery. Gas injection huff and puff (huff-n-puff), as another improved method, is applied to develop shale oil reservoirs. However, the shortcomings of huff-n-puff are the low sweep efficiency and poor performance for the late development of oilfields. Therefore, this paper adopts firstly the method of Allied In-Situ Injection and Production (AIIP) combined with CO2 huff-n-puff to develop shale oil reservoirs. Based on the data of Shengli Oilfield, a dual-porosity and dual-permeability model in reservoir-scale is established. Compared with traditional CO2 huff-n-puff and depletion method, the cumulative oil production of AIIP combined with CO2 huff-n-puff increases by 13,077 and 17,450 m3 respectively, indicating that this method has a good application prospect. Sensitivity analyses are further conducted, including injection volume, injection rate, soaking time, fracture half-length, and fracture spacing. The results indicate that injection volume, not injection rate, is the important factor affecting the performance. With the increment of fracture half-length and the decrement of fracture spacing, the cumulative oil production of the single well increases, but the incremental rate slows down gradually. With the increment of soaking time, cumulative oil production increases first and then decreases. These parameters have a relatively suitable value, which makes the performance better. This new method can not only enhance shale oil recovery, but also can be used for CO2 emission control.


2021 ◽  
Author(s):  
Sergey Anatolevich Vershinin ◽  
Alexander Nikolaevich Blyablyas ◽  
Dmitriy Aleksandrovich Golovanov ◽  
Artem Vitalievich Penigin ◽  
Nikolay Grigorievich Glavnov

Abstract The problem of associated petroleum gas utilization is especially urgent for fields located far from infrastructure facilities for raw gas transportation and treatment. For such fields, alternative methods of gas utilization, especially gas re-injection, are becoming relevant. The re-injection options include: injection into underground reservoir for storage (if there are reservoirs suitable for injection near the field), injection into a gas cap, if any, or injection into a productive reservoir. The latter method allows, along with solving the problem of gas disposal, to increase oil recovery. This study describes an example of miscible gas injection into the reservoir at the Chatylkinskoye field, the infrastructure assumptions which make this option a better one versus a selling option, and the features of a gas treatment and injection process.


2016 ◽  
Vol 19 (02) ◽  
pp. 350-355 ◽  
Author(s):  
T.. Wan ◽  
J. J. Sheng ◽  
M. Y. Soliman ◽  
Y.. Zhang

Summary The current technique to produce shale oil is to use horizontal wells with multistage stimulation. However, the primary oil-recovery factor is only a few percent. The low oil recovery and abundance of shale reservoirs provide a huge potential for enhanced oil-recovery (EOR) process. Well productivity in shale oil-and-gas reservoirs primarily depends on the size of fracture network and the stimulated reservoir volume (SRV) that provides highly conductive conduits to communicate the matrix with the wellbore. The fracture complexity is critical to the well-production performance, and it also provides an avenue for injected fluids to displace the trapped oil. However, the disadvantage of gasflooding in fractured reservoirs is that injected fluids may break through to production wells by means of the fracture network. Therefore, a preferred method is to use cyclic gas injection to overcome this problem. In this paper, we use a numerical-simulation approach to evaluate the EOR potential in fractured shale-oil reservoirs by cyclic gas injection. Simulation results indicate that the stimulated fracture network contributes significantly to the well productivity by means of its large contact area with the matrix, which prominently enhances the macroscopic sweep efficiency in secondary cyclic gas injection. In our previous simulation work, the EOR potential was evaluated in hydraulic planar-traverse fractures without considering the propagation of a natural-fracture network. In this paper, we examine the effect of fracture networks on shale oilwell secondary-production performance. The impact of fracture spacing and stress-dependent fracture conductivity on the ultimate oil recovery is investigated. The results presented in this paper demonstrate that cyclic gas injection has EOR potential in shale-oil reservoirs. This paper focuses on evaluating the effect of fracture spacing, the size of the fracture network, fracture connectivity (uniform and nonuniform), and stress-dependent fracture-network conductivity on well-production performance of shale-oil reservoirs by secondary cyclic gas injection.


2019 ◽  
Vol 10 (4) ◽  
pp. 1575-1589
Author(s):  
Aminu Yau Kaita ◽  
Oghenerume Ogolo ◽  
Xingru Wu ◽  
Isah Mohammed ◽  
Emmanuel Akaninyene Akpan

AbstractSour gas reservoirs have faced critics for environmental concerns and hazards, necessitating a novel outlook to how the produced sour gases could be either utilized or carefully disposed. Over the years of research and practice, several methods of sour gas processing and utilization have been developed, from the solid storage of sulfur to reinjecting the sour gas into producing or depleted light oil reservoir for miscible flooding enhanced oil recovery. This paper seeks to investigate the impact of injection parameters on the performance of sour gas injection for enhance oil recovery. In designing a miscible gas flooding project, empirical correlations are used and the key parameter which impacts the phase behavior is identified to be the minimum miscibility pressure (MMP). A compositional simulator was utilized in this research work to study the effect of injection parameters such as minimum miscibility pressure, acid gas concentration, injection pressure and injection rate on the performance of miscible sour gas injection for enhanced oil recovery. The findings showed that methane concentration had a significant impact on the MMP of the process. Additionally, an increase in acid gas concentration decreases the MMP of the process as a result of an increase in gas viscosity, consequently extending the plateau period resulting in late gas breakthrough and increased overall recovery of the process.


Sign in / Sign up

Export Citation Format

Share Document