Ultra-Deep LWD Electromagnetic Directional Resistivity for Waterflood Mapping – A Game Changer

2021 ◽  
Author(s):  
Parmanand Thakur ◽  
Maniesh Singh ◽  
Saif Al Arfi ◽  
Mohamed Al Gohary ◽  
Mariam Al Baloushi ◽  
...  

Abstract Abu Dhabi's thick Lower Cretaceous carbonate reservoirs experience injection water overriding oil. The water is held above the oil by negative capillary pressure until a horizontal borehole placed at the reservoir base creates a small pressure drawdown. This causes the water above to slump unpredictably towards the horizontal producer, increasing water cut and eventually killing the well under natural lift after a moderate amount of oil production. Water slumping is difficult to forecast using the reservoir model. This paper showcases the successful deployment of an ultra-deep electromagnetic directional resistivity (UDDE) instrument to map injection water movement. The UDDE instrument selected for the 6-in. horizontal hole was a 4¾-in. OD multifrequency tool with configurable transmitter-to-receiver spacings. Pre-well modeling using hybrid deterministic 1D resistivity inversions was conducted for the candidate well to investigate the resistivity tool's ability to identify water slumping at distances 60-100 ft TVD above the planned well trajectory. The inversions aided the selection of optimum operating frequencies, transmitter-to-receiver spacings and BHA configuration. During operations, multiple 1D and 3D inversions were run in the cloud real time during drilling to provide simultaneous deep and shallow resistivity inversions for early identification of the water fronts and structural changes, and near wellbore changes to geosteer and maximize reservoir contact in the complex layered reservoir. Real-time 1D and 3D deep inversion results indicated the resistivity tool had a depth of reliable waterflood detection of more than 80 ft. While drilling, an interpreted subseismic fault was encountered which appeared to influence how water moved in the reservoir. Water slumped closest through the sub-seismic fault towards the well path. Past the fault, the waterfront receded upwards away from the well bore. The data proved useful for updating the static model, providing a snapshot of water flood areas, reservoir tops and faults with throw, helping to optimize the completion design to defer water production and enhance oil production. Furthermore, it captured resistivities of target, underlying and overlying reservoirs to integrate with other geology and geophysics data for better reservoir and fluid characterization near the drilled area. The positive results of this case study encouraged field-wide implementation of this technology for waterflood mapping. The information provided allowed petroleum engineers to adjust the completion design to delay water breakthrough. This proactive approach to waterflood field management improves cumulative oil production and recovery factors according to mechanistic models which have been built and tested.

2021 ◽  
Author(s):  
Maniesh Singh ◽  
Parmanand Dhermeshwar Thakur ◽  
Mariam N. M. Al Baloushi ◽  
Haitham Ali Al Saadi ◽  
Maisoon M. Al Mansoori ◽  
...  

Abstract An Ultra-Deep Directional Electromagnetic LWD Resistivity (UDDE) tool was deployed in a mature Lower Cretaceous carbonate reservoir to map injection water movement. These thick carbonate reservoirs experience injection water preferentially travelling laterally at the top of the reservoir. The water held above oil by negative capillary forces slumps quickly, leading to increasing water cut, eventually killing the natural lift horizontal producing well. Real time 3D and 1D inversions provided important accurate mapping of the non-uniform water fronts and reservoir boundaries, providing insights into reservoir architecture and water movement. The candidate well is located in an area of significant uncertainty regarding fluid distribution and structural elements like sub-seismic faults etc. Pre-well 1D inversion results indicated that the water slumping front away from wellbore can be mapped within a vertical radius of 60-100 ft TVD. However, 1D inversion is not accurate where steeply dipping or discontinuous formations exist due to the presence of faults and is expected to impact well placement, mapping water fronts / formation boundaries and long-term oil recovery. Therefore in the real time, full 3D and 1D inversions of the Ultra-Deep EM data were run to provide high quality reservoir imaging in this complex geometrical setting and deliver improved reservoir fluid distribution and structure mapping. The pre-well inversion modeling optimized the frequency and transmitter-receiver spacing of the UDDE tool. The bottom hole assembly (BHA) configuration also included conventional LWD tools such as Neutron-Density, propagation Resistivity and Gamma Ray. Multiple 3D inversion datasets were processed in real-time using different depths of inversion ranging from 50 ft up to 120 ft depth. The 3D inversion results during the real-time drilling operation detected the non-uniform waterfront boundaries and water slumping up to 80 ft TVD above the wellbore using a slimhole (4¾″) tool. An interpreted sub-seismic down-thrown fault was mapped which controlled the non-uniform slumping fluid distribution, causing the water front to approach closest to the wellbore in this location. This suggests that the fault zone is open and provides a degree of increased permeability around the plane of the fault. The real-time 3D inversion, 1D shallow and 1D deep inversion results showed comparable structural imaging despite being inverted independently of each other. These results permitted updates to the static / dynamic reservoir models and an optimization of the completion design, to delay the water influx and thereby sustain oil production for a longer period of time. Field wide implementation of the UDDE tool and its advanced technology with improved 1D and 3D inversion results will enhance the quality of realtime geosteering, mapping and updating of reservoir models which have challenging water slumping fronts and structural variations. This will enable improvment in well locations, their spacing and finally allowing the proactive design of smart completions for enhanced oil production and improved recovery factors.


2021 ◽  
Author(s):  
Gaurav Modi ◽  
Manu Ujjwal ◽  
Srungeer Simha

Abstract Short Term Injection Re-distribution (STIR) is a python based real-time WaterFlood optimization technique for brownfield assets that uses advanced data analytics. The objective of this technique is to generate recommendations for injection water re-distribution to maximize oil production at the facility level. Even though this is a data driven technique, it is tightly bounded by Petroleum Engineering principles such as material balance etc. The workflow integrates and analyse short term data (last 3-6 months) at reservoir, wells and facility level. STIR workflow is divided into three modules: Injector-producer connectivity Injector efficiency Injection water optimization First module uses four major data types to estimate the connectivity between each injector-producer pair in the reservoir: Producers data (pressure, WC, GOR, salinity) Faults presence Subsurface distance Perforation similarity – layers and kh Second module uses connectivity and watercut data to establish the injector efficiency. Higher efficiency injectors contribute most to production while poor efficiency injectors contribute to water recycling. Third module has a mathematical optimizer to maximize the oil production by re-distributing the injection water amongst injectors while honoring the constraints at each node (well, facility etc.) of the production system. The STIR workflow has been applied to 6 reservoirs across different assets and an annual increase of 3-7% in oil production is predicted. Each recommendation is verified using an independent source of data and hence, the generated recommendations align very well with the reservoir understanding. The benefits of this technique can be seen in 3-6 months of implementation in terms of increased oil production and better support (pressure increase) to low watercut producers. The inherent flexibility in the workflow allows for easy replication in any Waterflooded Reservoir and works best when the injector well count in the reservoir is relatively high. Geological features are well represented in the workflow which is one of the unique functionalities of this technique. This method also generates producers bean-up and injector stimulation candidates opportunities. This low cost (no CAPEX) technique offers the advantages of conventional petroleum engineering techniques and Data driven approach. This technique provides a great alternative for WaterFlood management in brownfield where performing a reliable conventional analysis is challenging or at times impossible. STIR can be implemented in a reservoir from scratch in 3-6 weeks timeframe.


2021 ◽  
Author(s):  
Jorge Gomes ◽  
Jane Mason ◽  
Graham Edmonstone

This paper highlights the application of downhole fiber optic (FO) distributed temperature sensing (DTS) measurements for well and reservoir management applications: 1) Wellbore water injectivity profiling. 2) Mapping of injection water movement in an underlying reservoir. The U.A.E. field in question is an elongated anticline containing several stacked carbonate oil bearing reservoirs (Figure 1). Reservoir A, where two DTS monitored, peripheral horizontal water injectors (Y-1 and Y-2) were drilled, is less developed and tighter than the immediately underlying, more prolific Reservoir B with 40 years of oil production and water injection history. Reservoirs A and B are of Lower Cretaceous age, limestone fabrics made up of several 4th order cycles, subdivided by several thin intra dense, 2-5 ft thick stylolitic intervals within the reservoir zones. Between Reservoir A and Reservoir B there is a dense limestone interval (30-50 ft), referred as dense layer in the Figure 1 well sections.


2013 ◽  
Vol 701 ◽  
pp. 440-444
Author(s):  
Gang Liu ◽  
Peng Tao Liu ◽  
Bao Sheng He

Sand production is a serious problem during the exploitation of oil wells, and people put forward the concept of limited sand to alleviate this problem. Oil production with limited sanding is an efficient mod of production. In order to complete limited sand exploitation, improve the productivity of oil wells, a real-time sand monitoring system is needed to monitor the status of wells production. Besides acoustic sand monitoring and erosion-based sand monitoring, a vibration-based sand monitoring system with two installing styles is proposed recently. The paper points out the relationships between sand monitoring signals collected under intrusive and non-intrusive installing styles and sanding parameters, which lays a good foundation for further study and actual sand monitoring in oil field.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1485
Author(s):  
Aina Venkatasamy ◽  
Eric Guerin ◽  
Anais Blanchet ◽  
Christophe Orvain ◽  
Véronique Devignot ◽  
...  

The reasons behind the poor efficacy of transition metal-based chemotherapies (e.g., cisplatin) or targeted therapies (e.g., histone deacetylase inhibitors, HDACi) on gastric cancer (GC) remain elusive and recent studies suggested that the tumor microenvironment could contribute to the resistance. Hence, our objective was to gain information on the impact of cisplatin and the pan-HDACi SAHA (suberanilohydroxamic acid) on the tumor substructure and microenvironment of GC, by establishing patient-derived xenografts of GC and a combination of ultrasound, immunohistochemistry, and transcriptomics to analyze. The tumors responded partially to SAHA and cisplatin. An ultrasound gave more accurate tumor measures than a caliper. Importantly, an ultrasound allowed a noninvasive real-time access to the tumor substructure, showing differences between cisplatin and SAHA. These differences were confirmed by immunohistochemistry and transcriptomic analyses of the tumor microenvironment, identifying specific cell type signatures and transcription factor activation. For instance, cisplatin induced an “epithelial cell like” signature while SAHA favored a “mesenchymal cell like” one. Altogether, an ultrasound allowed a precise follow-up of the tumor progression while enabling a noninvasive real-time access to the tumor substructure. Combined with transcriptomics, our results underline the different intra-tumoral structural changes caused by both drugs that impact differently on the tumor microenvironment.


2019 ◽  
Author(s):  
V. Franzi ◽  
C. Robert ◽  
A. Shoeibi ◽  
R. Galimberti ◽  
E. Ndonwie Mahbou ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3926
Author(s):  
Damian Janiga ◽  
Daniel Podsobiński ◽  
Paweł Wojnarowski ◽  
Jerzy Stopa

Drilling cost is one of the most critical aspects in the reservoir management plan. Costs may exceed a million dollars; thus, optimal designing of the well trajectory in the reservoir and completion are essential. The implementation of a multilateral well (MLW) in reservoir management has great potential to optimize oil production. The object of this study is to develop an integrated workflow of end-point multilateral well placement optimization integrated with the reservoir simulator supported by artificial intelligence (AI) methods. The paper covers various types of MLW construction, including: horizontal, bi-, tri-, and quad-lateral wells. For quad-lateral wells, the capital expenditure is highest; nevertheless, acceleration of oil production affects the project’s NPV (net present value), indicating the type of well that is most promising to implement in the reservoir. Tri- and quad-lateral wells can operate for 12.1 and 9.8 years with a constant production rate. The decreasing hydrocarbon production rate is affected by reservoir pressure and the reservoir water production rate. Other well design patterns can accelerate water production. The well’s optimal trajectory was evaluated by the genetic algorithm (GA) and particle swarm optimization (PSO). The major difference between the GA and PSO optimization runs is visible with respect to water production and is related to the modification of one well branch trajectory in a reservoir. The proposed methodology has the advantage of easy implementation in a closed-loop optimization system coupled with numerical reservoir simulation. The paper covers the solution background, an implementation example, and the model limitations.


2001 ◽  
Vol 5 (4) ◽  
pp. 569-576 ◽  
Author(s):  
C. Bounama ◽  
S. Franck ◽  
W. von Bloh

Abstract. Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space. Keywords: Surface water reservoir, water fluxes, regassing, degassing, global water cycle


Sign in / Sign up

Export Citation Format

Share Document