Maximize Asset Utilization by Effectively Identifying and Removing Bottlenecks

2021 ◽  
Author(s):  
Dheeraj Nagwani ◽  
Sara Al Katheeri

Abstract ADNOC Gas Processing Ruwais NGL Fractionation plant receives and fractionates the NGL produced in upstream gas processing plants. After operation of newly designed upstream NGL plants, composition of NGL feedstock has become richer in Ethane and Propane. Consequently, nameplate capacity were reduced by~25%. In view of future increased NGL production, nameplate capacity of fractionation trains needs to be re-instated. Alternatively, a new fractionation train needs to be installed to accommodate additional NGL. To explore the opportunity for maximum utilization for existing trains, in line with the ADNOC strategy of enhancing profitability and asset utilization, a technical study was conducted to increase the processing capacity back to original nameplate capacity with lighter NGL composition. This was to identify the potential bottlenecks in the facility and suggest debottlenecking options with a reasonable investment. The Technical study covers the following activities: Simulation: Rigorous process simulation including the licensor units of DEO/Propane amine units Adequacy checks and identification of bottlenecks: Line sizing adequacy check and detailed hydraulic evaluation of the major piping Equipment adequacy check Relief & blowdown and flare system adequacy check Proprietary equipment/design evaluation of licensed units Adequacy check for In-line instruments like control valves, flow elements/transmitters, thermowells Rotating equipment adequacy checks performed with the concurrence from OEMs. Licensor Endorsement: Obtained the endorsement of AGRU licensor (Shell) for the increased flow rate with revised contaminant levels with recommendations of removing identified bottlenecks. Bottlenecks mitigation: Various options for bottleneck mitigation was studied and most optimum solution was selected to remove the identified bottleneck. The study has concluded that current capacity limitation was mainly due to bottlenecks in Ethane loop. Therefore, by mitigating the identified bottlenecks (i.e. replacing lines with bigger size, providing high performance trays, high performance internals, replacing few equipment's with new one etc.), the original nameplate capacity can be re-instated. The study concludes that increased NGL forecasted flow with lighter composition could be processed in existing Ruwais fractionation trains by doing minor modifications (as compared to new train). A capacity increase of ~25% was achieved with minimum investment and requirement of new fractionation train could avoided. If extensive adequacy studies are carried out to identify the bottlenecks, the capacity enhancement in existing facilities can be achieved with minimum investment and major cost for new plants/trains can be avoided.

2020 ◽  
Vol 10 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Lamia Taouzinet ◽  
Sofiane Fatmi ◽  
Allaeddine Khellouf ◽  
Mohamed Skiba ◽  
Mokrane Iguer-ouada

Background: Alpha-tocopherol is a potent antioxidant involved in sperm protection particularly during cryopreservation. However, its poor solubility limits the optimal protection in aqueous solutions. Objective: The aim of this study was to enhance the solubility of α-tocopherol by the use of liposomes. Methods: The experimental approach consisted to load vitamin E in liposomes prepared by ethanol injection method and the optimization carried out by an experimental design. The optimum solution was characterized by high performance liquid chromatography and scanning electron microscope. Finely, the impact on sperm motility protection was studied by the freezing technic of bovine sperm. Results: The optimum solution was obtained when using 10.9 mg/ml of phospholipids, 1.7 mg/ml of cholesterol and 2 mg/ml of vitamin E. The liposome size was 99.86 nm, providing 78.47% of loaded efficiency. The results showed also a significant positive impact on sperm motility after hours of preservation. Conclusion: In conclusion, the current results showed the interest of liposome preparation as an alternative to enhance vitamin E solubility and to protect spermatozoa during cryopreservation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umer Zahid

AbstractMost of the industrial acid gas removal (AGR) units employ chemical absorption process for the removal of acid gases from the natural gas. In this study, two gas processing plants operational in Saudi Arabia have been selected where two different amines n1amely, diglycolamine (DGA) and monoethanol amine (MDEA) are used to achieve the sweet gas purity with less than 4 ppm of H2S. This study performed a feasibility simulation of AGR unit by utilizing the amine blend (DGA+MDEA) for both plants instead of a single amine. The study used a commercial process simulator to analyze the impact of process variables such as amine circulation rate, amine strength, lean amine temperature, regenerator inlet temperature, and absorber and regenerator pressure on the process performance. The results reveal that when the MDEA (0–15 wt. %) is added to DGA, marginal energy savings can be achieved. However, significant operational energy savings can be made when the DGA (0–15 wt. %) is blended with MDEA being the main amine.


2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


2021 ◽  
Author(s):  
Ayman Ismail Al Zawaideh ◽  
Khalifa Hassan Al Hosani ◽  
Igor Boiko ◽  
Abdulla AlQassab ◽  
Ibrahim Khan

Abstract Compressors are widely used to transport gas offshore and onshore. Oil rigs and gas processing plants have several compressors operating either alone, in parallel or in trains. Hence, compressors must be controlled optimally to insure a high rate of production, and efficient power consumption. The aim of this paper is to provide a control algorithm to optimize the compressors operation in parallel in process industries, to minimize energy consumption in variable operating conditions. A dynamic control-oriented model of the compression system has been developed. The optimization algorithm is tested on an experimental prototype having two compressors connected in parallel. The developed optimization algorithm resulted in a better performance and a reduction of the total energy consumption compared to an equal load sharing scheme.


Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.


Sign in / Sign up

Export Citation Format

Share Document