Enhanced Productivity in Horizontal Open Hole Completion Using Integrated Dynamic Diversion Acid Squeeze Technique in Highly Depleted Well: Successful Application in West Kuwait Field

2021 ◽  
Author(s):  
Salem Al-Sabea ◽  
Abdullah Abu-Eida ◽  
Milan Patra ◽  
Yousef Haider ◽  
Hasan Al Qattan ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any Matrix Acid treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic Acid treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage acid stimulation technique using Integrated Dynamic Diversion (IDD) has been performed in a West Kuwait field well. The process uses active fluid energy to divert flow into a specific sweet point (high pressure point) in the lateral, which can pinpoint and precisely place acid treatment at the desired location. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by customized foamed HCL acid systems employed for improving individual stage targets in depleted reservoir. The IDD diversion shifts the acid treatment to unstimulated areas to create complex wormholes which increase reservoir contact volume and improve overall conductivity in the lateral. The kinetics and chemical diversion of the IDD methodology are highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. By utilizing this application in one continuous operation, the use of chemical diverters, straddle packers and mechanical plugs for selective treatment in open hole is eliminated, making this multistage completion technology economical for these depleted wells. The paper presents results obtained after stimulating multiple zones along the lateral and describes the lessons learned in the implementation of this methodology. Going forward, the methods described, which can be considered a best practice for application to similar challenges in other fields. Proper candidate selection, optimum completion tools, and the fluid combination of in-situ gel-based diverter used to temporary plug the acid stimulated zone and foamed acid created an increase in the oil production of 430 BOPD.

2021 ◽  
Author(s):  
Abdullah Abu-Eida ◽  
Salem Al-Sabea ◽  
Milan Patra ◽  
Bader Akbar ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The Minagish field in West Kuwait is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly depleted tight carbonate intervals with uneven reservoir quality and curtailed mobility. These conditions have shifted the field development from vertical to horizontal wellbore completions. Achieving complete wellbore coverage is a challenge for any frac treatment performed in a long openhole lateral with disparities in reservoir characteristics. The fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, economic fracturing treatment options dwindle significantly, thus reservoir stimulation results are not always optimum. A multistage fracturing technique using Integrated Dynamic Diversion (IDD) has been performed first time in West Kuwait field well. The process uses active fluid energy to divert flow into a specific fracture point in the lateral, which can initiate and precisely place a fracture. The process uses two self-directed fluid streams: one inside the pipe and one in the annulus. The process mixes the two fluids downhole with high energy to form a consistent controllable mixture. The technique includes pinpoint fluid jetting at the point of interest, followed by in-situ HCL based crosslinked systems employed for improving individual stage targets. The IDD diversion shifts the fracture to unstimulated areas to create complex fractures which increases reservoir contact volume and improved overall conductivity in the lateral. The kinetic and chemical diversion of the IDD methodology is highly critical to control fluid loss in depleted intervals and results in enhanced stimulation. Pumping a frac treatment in openhole without control would tend to initiate a longitudinal fracture along the wellbore and may restrict productivity. By using specialized completion tools with nozzles at the end of the treating string, a new pinpoint process has been employed to initiate a transverse fracture plane in IDD applications. Proper candidate selection and fluid combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. By combining these processes into one continuous operation, the use of wireline/coiled tubing for jetting, plug setting and milling is eliminated, making the new multistage completion technology economical for these depleted wells. The application of the IDD methodology is a fit-for-purpose solution to address the unique challenges of openhole operations, formation technical difficulties, high-stakes economics, and untapped high potential from intermittent reservoirs. The paper will present post-operation results of this completion from all fractured zones along the lateral and will describe the lessons learned in implementation of this methodology which can be considered as best practice for application in similar challenges in other fields.


2022 ◽  
Author(s):  
Abdullah Al-Enezi ◽  
Mohammed Al-Othman ◽  
Mishari Al-Shtail ◽  
Yousef Al-Sadeeqi ◽  
Kutbuddin Bhatia ◽  
...  

Abstract The unconventional Bahrah field is a high potential field which poses several challenges in terms of hydrocarbon flow assurance through highly heterogeneous tight carbonate intervals with poor reservoir quality and curtailed mobility. Due to this, the field development strategies have prioritized well completion using horizontal acid fracturing technology over vertical wells. During fracturing, the acid system tends to form highly conductive channels in the formation. Most of the fluid will flow into the path of least resistance leaving large portions of the formation untreated. As a result, the fracturing treatment options dwindle significantly, thus reservoir stimulation results are not optimum in each stage. Achieving complete wellbore coverage is a challenge for any acid frac treatment performed in long lateral with variations in reservoir characteristics. The multistage acid fracturing using Integrated Far-field Diversion (IFD) is performed using selective openhole completion, enabling mechanical annular segmentation of the wellbore using swellable packers and sliding sleeves. The mechanical as well as chemical diversion in IFD methodology is highly important to the overall stimulation success. The technique includes pumping multiple self-degrading particle sizes, considering the openhole annular space and wide presence of natural fractures, followed by in-situ HCL based crosslinked system employed for improving individual stage targets. A biomodal strategy is employed wherein larger particles are supplemented with smaller that can bridge pore throats of the larger particles and have the desired property of rigidity and develop a level of suppleness once exposed to reservoir conditions. The IFD diversion shifts the fracture to unstimulated areas to create complex fractures that increase reservoir contact volume and improving overall conductivity. This paper examines IFD in acid fracturing and describes the crucial diversion strategy. Unlike available diverters used in other fields, the particulates are unaffected at low pH values and in live acids. Proper agent selection and combination with in-situ crosslink acid effectively plug the fracture generated previously and generate pressure high enough to initiate another fracture for further ramification. The optimization and designing of the IFD diversion in each stage plays a key role and has helped to effectively plug fractures and realize segmentation. Concentration of diversion agents, volume of fluid system and open-hole stage length sensitivity plays vital role for the success of this treatment. The application of IFD methodology is tuned as fit-for-purpose to address the unique challenges of well operations, formation technical difficulties, high-stakes economics, and untapped high potential from this unconventional reservoir. A direct result of this acid fracturing treatment is that the post-operation data showed high contribution of all fractured zones along the section in sustained manner. Furthermore, this methodology can be considered as best practice for application in unconventional challenges in other fields.


2019 ◽  
Author(s):  
Kevin Alexander ◽  
Dave Bruce ◽  
Colin Williamson ◽  
Nicholas Moses ◽  
Elnur Ismayilov ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. SA135-SA142
Author(s):  
Venkataraman Jambunathan ◽  
FNU Suparman ◽  
Zhipeng Liu ◽  
Weijun Guo ◽  
Daniel Dorffer

Formation evaluation for mature oil fields remains a challenge for operators. Rock-petrophysical properties present large uncertainties following years of production. Formation evaluation becomes even more challenging when there is a lack of open-hole logging data as is typically the case. Logging programs for cased-hole formation evaluation are limited by the size of the well completion. In addition, a metallic casing often prevents the effective use of electric measurements. However, pulsed-neutron tools (PNTs) are a viable option for mature fields. We developed a brief review of PNT theory. The high-energy neutrons output at a high count rate fit the need of cased-hole applications. Application of pulsed-neutron technology for mature fields and a case history from west Texas, in which pulsed neutron technology was used to determine remaining oil saturation are discussed. We documented the best practice for data acquisition and the processing workflow. Having a good collaboration between operator and service provider helps to better understand the logging objectives and in job planning, which is important for the success of the logging operation.


2007 ◽  
Author(s):  
Ken E.T. Halward ◽  
Joe Emery ◽  
Rod Christensen ◽  
Daniel Joseph Bourgeois ◽  
Grant Skinner ◽  
...  

2014 ◽  
Author(s):  
K.. Francis-LaCroix ◽  
D.. Seetaram

Abstract Trinidad and Tobago offshore platforms have been producing oil and natural gas for over a century. Current production of over 1500 Bcf of natural gas per year (Administration, 2013) is due to extensive reserves in oil and gas. More than eighteen of these wells are high-producing wells, producing in excess of 150 MMcf per day. Due to their large production rates, these wells utilize unconventionally large tubulars 5- and 7-in. Furthermore, as is inherent with producing gas, there are many challenges with the production. One major challenge occurs when wells become liquid loaded. As gas wells age, they produce more liquids, namely brine and condensate. Depending on flow conditions, the produced liquids can accumulate and induce a hydrostatic head pressure that is too high to be overcome by the flowing gas rates. Applying surfactants that generate foam can facilitate the unloading of these wells and restore gas production. Although the foaming process is very cost effective, its application to high-producing gas wells in Trinidad has always been problematic for the following reasons: Some of these producers are horizontal wells, or wells with large deviation angles.They were completed without pre-installed capillary strings.They are completed with large tubing diameters (5.75 in., 7 in.). Recognizing that the above three factors posed challenges to successful foam applications, major emphasis and research was directed toward this endeavor to realize the buried revenue, i.e., the recovery of the well's potential to produce natural gas. This research can also lead to the application of learnings from the first success to develop treatment for additional wells, which translates to a revenue boost to the client and the Trinidad economy. Successful treatments can also be used as correlations to establish an industry best practice for the treatment of similarly completed wells. This paper will highlight the successes realized from the treatment of three wells. It will also highlight the anomalies encountered during the treatment process, as well as the lessons learned from this treatment.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


2021 ◽  
Author(s):  
Sviatoslav Iuras ◽  
Samira Ahmad ◽  
Chiara Cavalleri ◽  
Yernur Akashev

Abstract Ukraine ranks the third largest gas reserves in Europe. Gas production is carried out mainly from the Dnieper-Donets Basin (DDB). A gradual decline in reserves is forcing Ukraine to actively search for possible sources to increase reserves by finding bypassed gas intervals in existing wells or exploration of new prospects. This paper describes 3 case studies, where advanced pulsed neutron logging technology has shown exceptional value in gas-bearing layer identification in different scenarios. The logging technology was applied for formation evaluation. The technology is based on the neutron interaction with the minerals and the fluids contained in the pore space. The logging tool combines measurements from multiple detectors and spacing for self-compensated neutron cross-capture section (sigma) and hydrogen index (HI), and the Fast Neutron Cross Section (FNXS) high-energy neutron elastic cross section rock property. Comprehensive capture and inelastic elemental spectroscopy are simultaneously recorded and processed to describe the elemental composition and the matrix properties, reducing the uncertainties related to drilling cuttings analysis, and overall, the petrophysical evaluation combined with other log outputs. The proposed methodology was tested in several wells, both in open hole and behind casing. In the study we present its application in three wells from different fields of the DDB. The log data acquisition and analysis were performed across several sandstone beds and carbonates formation with low porosities (<10%), in various combinations of casing and holes sizes. The results showed the robustness and effectiveness of using the advanced pulsed neutron logging (PNL) technologies in multiple cases: Case Study A: Enabling a standalone cased hole evaluation and highlighting new potential reservoir zones otherwise overlooked due to absence of open hole logs. Case Study B: Finding by-passed hydrocarbon intervals that were missed from log analysis based on conventional open hole logs for current field operator. Case Study C: Identifying gas saturated reservoirs and providing solid lithology identification that previously was questioned from drilling cuttings in an unconventional reservoir.


2021 ◽  
Author(s):  
Rahul Kamble ◽  
Youssef Ali Kassem ◽  
Kshudiram Indulkar ◽  
Kieran Price ◽  
Majid Mohammed A. ◽  
...  

Abstract Coring during the development phase of an oil and gas field is very costly; however, the subsurface insights are indispensable for a Field Development Team to study reservoir characterization and well placement strategy in Carbonate formations (Dolomite and limestone with Anhydrite layers). The objective of this case study is to capture the successful coring operation in high angle ERD wells, drilled from the fixed well location on a well pad of an artificial island located offshore in the United Arab Emirates. The well was planned and drilled at the midpoint of the development drilling campaign, which presented a major challenge of wellbore collision risk whilst coring in an already congested area. The final agreed pilot hole profile was designed to pass through two adjacent oil producer wells separated by a geological barrier, however, the actual separation ratio was < 1.6 (acceptable SF to drill the well safely), which could have compromised the planned core interval against the Field Development Team's requirement. To mitigate the collision risks with offset wells during the coring operation, a low flow rate MWD tool was incorporated in the coring BHA to monitor the well path while cutting the core. After taking surveys, IFR and MSA corrections were applied to MWD surveys, which demonstrated an acceptable increase in well separation factor as per company Anti-Collision Risk Policy to continue coring operations without shutting down adjacent wells. A total of 3 runs incorporating the MWD tool in the coring BHA were performed out of a total of 16 runs. The maximum inclination through the coring interval was 73° with medium well departure criteria. The main objective of the pilot hole was data gathering, which included a full suite of open hole logging, seismic and core cut across the target reservoir. A total of 1295 ft of core was recovered in a high angle well across the carbonate formation's different layers, with an average of 99% recovery in each run. These carbonate formations contain between 2-4% H2S and exhibit some fractured layers of rock. To limit and validate the high cost of coring operations in addition to core quality in the development phase, it was necessary to avoid early core jamming in the dolomite, limestone and anhydrite layers, based on previous coring runs in the field. Core jamming leads to early termination of the coring run and results in the loss of a valuable source of information from the cut core column in the barrel. Furthermore, it would have a major impact on coring KPIs, consequently compromising coring and well objectives. Premature core jamming and less-than-planned core recovery from previous cored wells challenged and a motivated the team to review complete field data and lessons learned from cored offset wells. Several coring systems were evaluated and finally, one coring system was accepted based on core quality as being the primary KPI. These lessons learned were used for optimizing certain coring tools technical improvements and procedures, such as core barrel, core head, core handling and surface core processing in addition to the design of drilling fluids and well path. The selection of a 4" core barrel and the improved core head design with optimized blade profile and hold on sharp polished cutters with optimized hydraulic efficiency, in addition to the close monitoring of coring parameters, played a significant role in improving core cutting in fractured carbonate formation layers. This optimization helped the team to successfully complete the 1st high angle coring operation offshore in the United Arab Emirates. This case study shares the value of offset wells data for coring jobs to reduce the risk of core jamming, optimize core recovery and reduce wellbore collision risks. It also details BHA design decisions(4"core barrel, core head, low flow rate MWD tool and appropriate coring parameters), all of which led to a new record of cutting 1295 ft core in a carbonate formation with almost 100% recovery on surface.


Author(s):  
Nora Abdelrahman Ibrahim

Terrorism and violent extremism have undoubtedly become among the top security concerns of the 21st century. Despite a robust agenda of counterterrorism since the September 11, 2001 attacks, the evolution of global terrorism has continued to outpace the policy responses that have tried to address it. Recent trends such as the foreign fighter phenomenon, the rampant spread of extremist ideologies online and within communities, and a dramatic increase in terrorist incidents worldwide, have led to a recognition that “traditional” counterterrorism efforts are insufficient and ineffective in combatting these phenomena. Consequently, the focus of policy and practice has shifted towards countering violent extremism by addressing the drivers of radicalization to curb recruitment to extremist groups. Within this context, the field of countering violent extremism (CVE) has garnered attention from both the academic and policy-making worlds. While the CVE field holds promise as a significant development in counterterrorism, its policy and practice are complicated by several challenges that undermine the success of its initiatives. Building resilience to violent extremism is continuously challenged by an overly securitized narrative and unintended consequences of previous policies and practices, including divisive social undercurrents like Islamophobia, xenophobia, and far-right sentiments. These by-products make it increasingly difficult to mobilize a whole of society response that is so critical to the success and sustainability of CVE initiatives. This research project addresses these policy challenges by drawing on the CVE strategies of Canada, the US, the UK, and Denmark to collect best practice and lessons learned in order to outline a way forward. 


Sign in / Sign up

Export Citation Format

Share Document