Pact All Electric - One Step Closer to Autonomy

2021 ◽  
Author(s):  
Christian Petersen ◽  
Ola Strand ◽  
Espen Sten Johansen ◽  
Dag Almar Hansen ◽  
Dag Ketil Fredheim ◽  
...  

Abstract E&P companies are increasingly challenged with cost-effective development or upgrade of remote fields, ensuring crew safety and regulatory requirements for reducing environmental impact. Remote operations and unmanned platforms have significantly lower CO2 emissions and lowerCAPEX and OPEX in areas of sparse infrastructure. Complete electrification of safety critical control systems is key to maintain safe production while digitization, automation and condition based maintenance reduce required on-site personnel. An all-electric wellhead- and production tree valve actuator for handling emergency situations has been developed under a Joint Industry Project by Equinor, Baker Hughes and TECHNI. PACT utilize a completely new, patent pending failsafe mechanism that is inherently safe without requirement for redundancy. PACT contains an embedded controller and sensors with extremely low power consumption rendering it well suited for solar/alternate power sources. A new super-capacitor is under development in partnership with the University of Southeast Norway, that in combination with the fastest failsafe mechanism ever ensure safety in all modes of operation, even with all lines down or consumed by flames. Electric actuators offer significant CAPEX savings over hydraulic actuators by eliminating costly hydraulic control systems and hydraulic lines as well as saving space and weight. Overall system cost is significantly lower than hydraulic systems (Equinor estimates at around USD 2million per well for an unmanned platform) while also reducing emissions and environmental impact. Globally, there are approximately 7000 offshore platforms of which 1600 are unmanned (200 in the Middle East). The existing population of unmanned platforms is undergoing continual upgrades and there are significant cost savings by using the PACT as a drop-in replacement for existing hydraulic systems, while enabling fully digitized, remote control and autonomous operations. Low power consumption, weight and a small footprint renders it equally suited for land wells, including retrofit upgrades without reinforcing infrastructure. PACT is designed to be an integral part of automated and remote-control systems and the modular technology is also being adopted for subsea trees, as well as other mission critical pressure control applications. Given the significant benefits in simplifying operations and reducing cost while improving HSSE, leading E&P companies including Equinor, Total, Aker BP and others have chosen electric operations as future technology platform for both topside and subsea operations. Embedded force-, pressure-, temperature- and vibration sensors enable data-driven, fact- and condition based maintenance. Aggregating real-time and historical data, component- and system models ensures fully remote/autonomous operation with a digital twin. The novel failsafe-mechanism fronts the most reliable action of all times while the patent pending solution ensures closing times down to 1 second. In 2020 the consortium was awarded USD 950 000 in government support funding and in May 2021 PACT won OTC Spotlight on New Technology award. The paper aims to show how the technology works and underline why it will take a place in the future of well control and production.

2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
John Nicot ◽  
Ludivine Fadel ◽  
Thierry Taris

The widespread deployment of the Internet of Things (IoT) requires the development of new embedded systems, which will provide a diverse array of different intelligent functionalities. However, these devices must also meet environmental, maintenance, and longevity constraints, while maintaining extremely low-power consumption. In this work, a batteryless, low-power consumption, compact embedded system for IoT applications is presented. This system is capable of using a combination of hybrid solar and radiofrequency power sources and operates in the 900 MHz ISM band. It is capable of receiving OOK or ASK modulated data and measuring environmental data and can transmit information back to the requester using GFSK modulated data. The total consumption of the system during its sleep state is 920 nW. Minimum power required to operate is −15.1 dBm or 70 lux, when using only radiofrequency or solar powering, respectively. The system is fully designed with components off the shelf (COTS).


2013 ◽  
Vol 373-375 ◽  
pp. 363-366
Author(s):  
Jing Sheng Yu ◽  
Hong Qiang Sun

It describes the basic principle of velocity parameters measuring of car in operation, establishes the related mathematical model. It disigns an intelligent, integrated digital solutions to combination instrumentation of the car based on MC9S12DP256B. This system has advantages of high performance, high precision, low cost, low power consumption, good stability, sensitive respond and expandability. The system measures and shows online velocity parameters of the car. It has fuction such as safety alarm. The system reserves bus interface such as SCI and CAN, correspondences easily with other electronic engine control systems of the car.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 535
Author(s):  
Antonia Silvestri ◽  
Nicola Di Trani ◽  
Giancarlo Canavese ◽  
Paolo Motto Ros ◽  
Leonardo Iannucci ◽  
...  

Manipulation of ions and molecules by external control at the nanoscale is highly relevant to biomedical applications. We report a biocompatible electrode-embedded nanofluidic channel membrane designed for electrofluidic applications such as ionic field-effect transistors for implantable drug-delivery systems. Our nanofluidic membrane includes a polysilicon electrode electrically isolated by amorphous silicon carbide (a-SiC). The nanochannel gating performance was experimentally investigated based on the current-voltage (I-V) characteristics, leakage current, and power consumption in potassium chloride (KCl) electrolyte. We observed significant modulation of ionic diffusive transport of both positively and negatively charged ions under physical confinement of nanochannels, with low power consumption. To study the physical mechanism associated with the gating performance, we performed electrochemical impedance spectroscopy. The results showed that the flat band voltage and density of states were significantly low. In light of its remarkable performance in terms of ionic modulation and low power consumption, this new biocompatible nanofluidic membrane could lead to a new class of silicon implantable nanofluidic systems for tunable drug delivery and personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document