A Novel Workflow to Invert Broadband Seismic Data: A Case Study from Onshore Fields in Abu Dhabi

2021 ◽  
Author(s):  
M. Afia ◽  
A. Mukherjee ◽  
A. Glushchenko ◽  
R. Elsayed ◽  
M. Paydayesh ◽  
...  

Abstract Broadband seismic data has several benefits for quantitative seismic reservoir characterization. It is characterized by a significant increase of seismic frequency bandwidth on both the low and high sides of the frequency spectra. This work presents a novel seismic inversion approach to exploit the full value out of broadband seismic data. The average wavelet from broadband seismic data is limited in high and low frequencies due to the short duration of the well log and the misalignment of the seismic data with the well-log synthetic at high frequencies. Limitation of the extracted wavelet and optimization can generate band-limited inversion results that do not capture the full range of frequencies. An alternate approach of dividing the data into three frequency bands resulted in extracted wavelets that capture the spectrum of each band, and in turn produced a reliable broadband inversion result honoring the full range of frequencies present in the data. Inversion results gave a superior match of the estimated synthetic with the data spectra (Figure 1), and the reservoir was better calibrated at all the well locations. Successful recovery of the ultra-low frequencies enabled us to maximize the value of the broadband data. The workflow also pushed the frequency of the inverted properties to 80 Hz which helped in turn to characterize some of the relatively thinner layers, which were otherwise getting averaged out. Building a low frequency model for AVO seismic inversion using ultra-low frequency information leads to a significant improvement of predictability away from wells. As a prior model, a geologically constrained (4 Hz) low frequency filter was applied. Review of the broadband AVO seismic inversion results clearly indicate a better match between the inverted traces and well log properties at the studied wells. Also, the blind well test results at four wells indicate an excellent match to the blind well logs, which adds a high degree of confidence on the inverted elastic properties. Also, the synthetic spectra of the ultra-low and ultra-high frequencies is captured and maintained in the inverted broadband seismic data. The novelty of the new workflow is in the ability to effectively invert the broad frequency band of seismic data. Successful recovery of the ultra-low and ultra-high frequencies enabled us to maximize the value of the broadband data. Subsequently, the high frequency elastic properties helped in successful characterization of thinner reservoirs and will help in better optimization of the future field development initiatives.

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R385-R400
Author(s):  
Luca Bianchin ◽  
Emanuele Forte ◽  
Michele Pipan

Low-frequency components of reflection seismic data are of paramount importance for acoustic impedance (AI) inversion, but they typically suffer from a poor signal-to-noise ratio. The estimation of the low frequencies of AI can benefit from the combination of a harmonic reconstruction method (based on autoregressive [AR] models) and a seismic-derived interval velocity field. We have developed the construction of a convex cost function that accounts for the velocity field, together with geologic a priori information on AI and its uncertainty, during the AR reconstruction of the low frequencies. The minimization of this function allows one to reconstruct sensible estimates of low-frequency components of the subsurface reflectivity, which lead to an estimation of AI model via a recursive formulation. In particular, the method is suited for an initial and computationally inexpensive assessment of the absolute value of AI even when no well-log data are available. We first tested the method on layered synthetic models, then we analyzed its applicability and limitations on a real marine seismic data set that included tomographic velocity information. Despite a strong trace-to-trace variability in the results, which could partially be mitigated by multitrace inversion, the method demonstrates its capability to highlight lateral variations of AI that cannot be detected when the low frequencies only come from well-log information.


2021 ◽  
Author(s):  
Siddharth Garia ◽  
Arnab Kumar Pal ◽  
Karangat Ravi ◽  
Archana M Nair

<p>Seismic inversion method is widely used to characterize reservoirs and detect zones of interest, i.e., hydrocarbon-bearing zone in the subsurface by transforming seismic reflection data into quantitative subsurface rock properties. The primary aim of seismic inversion is to transform the 3D seismic section/cube into an acoustic impedance (AI) cube. The integration of this elastic attribute, i.e., AI cube with well log data, can thereafter help to establish correlations between AI and different petrophysical properties. The seismic inversion algorithm interpolates and spatially populates data/parameters of wells to the entire seismic section/cube based on the well log information. The case study presented here uses machine learning-neural network based algorithm to extract the different petrophysical properties such as porosity and bulk density from the seismic data of the Upper Assam basin, India. We analyzed three different stratigraphic  units that are established to be producing zones in this basin.</p><p> AI model is generated from the seismic reflection data with the help of colored inversion operator. Subsequently, low-frequency model is generated from the impedance data extracted from the well log information. To compensate for the band limited nature of the seismic data, this low-frequency model is added to the existing acoustic model. Thereafter, a feed-forward neural network (NN) is trained with AI as input and porosity/bulk density as target, validated with NN generated porosity/bulk density with actual porosity/bulk density from well log data. The trained network is thus tested over the entire region of interest to populate these petrophysical properties.</p><p>Three seismic zones were identified from the seismic section ranging from 681 to 1333 ms, 1528 to 1575 ms and 1771 to 1814 ms. The range of AI, porosity and bulk density were observed to be 1738 to 6000 (g/cc) * (m/s), 26 to 38% and 1.95 to 2.46 g/cc respectively. Studies conducted by researchers in the same basin yielded porosity results in the range of 10-36%. The changes in acoustic impedance, porosity and bulk density may be attributed to the changes in lithology. NN method was prioritized over other traditional statistical methods due to its ability to model any arbitrary dependency (non-linear relationships between input and target values) and also overfitting can be avoided. Hence, the workflow presented here provides an estimation of reservoir properties and is considered useful in predicting petrophysical properties for reservoir characterization, thus helping to estimate reservoir productivity.</p>


Author(s):  
Gundula B. Runge ◽  
Al Ferri ◽  
Bonnie Ferri

This paper considers an anytime strategy to implement controllers that react to changing computational resources. The anytime controllers developed in this paper are suitable for cases when the time scale of switching is in the order of the task execution time, that is, on the time scale found commonly with sporadically missed deadlines. This paper extends the prior work by developing frequency-weighted anytime controllers. The selection of the weighting function is driven by the expectation of the situations that would require anytime operation. For example, if the anytime operation is due to occasional and isolated missed deadlines, then the weighting on high frequencies should be larger than that for low frequencies. Low frequency components will have a smaller change over one sample time, so failing to update these components for one sample period will have less effect than with the high frequency components. An example will be included that applies the anytime control strategy to a model of a DC motor with deadzone and saturation nonlinearities.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. V185-V195 ◽  
Author(s):  
Mostafa Naghizadeh ◽  
Mauricio Sacchi

We have developed a ground-roll attenuation strategy for seismic records that adopts the curvelet transform. The curvelet transform decomposes the seismic events based on their dip and frequency content information. The curvelet panels that contain only either reflection or ground-roll energy can be used to alter the curvelet panels with mixed reflection and ground-roll energies. We build a curvelet-domain mask function from the ground-roll-free curvelet coefficients (high frequencies) and downscale it to the ground-roll-contaminated curvelet coefficients (low frequencies). The mask function is used inside a least-squares optimization scheme to preserve the seismic reflections and attenuate the ground roll. Synthetic and real seismic data examples show the application of the proposed ground-roll attenuation method.


2001 ◽  
Vol 41 (2) ◽  
pp. 131
Author(s):  
A.G. Sena ◽  
T.M. Smith

The successful exploration for new reservoirs in mature areas, as well as the optimal development of existing fields, requires the integration of unconventional geological and geophysical techniques. In particular, the calibration of 3D seismic data to well log information is crucial to obtain a quantitative understanding of reservoir properties. The advent of new technology for prestack seismic data analysis and 3D visualisation has resulted in improved fluid and lithology predictions prior to expensive drilling. Increased reservoir resolution has been achieved by combining seismic inversion with AVO analysis to minimise exploration risk.In this paper we present an integrated and systematic approach to prospect evaluation in an oil/gas field. We will show how petrophysical analysis of well log data can be used as a feasibility tool to determine the fluid and lithology discrimination capabilities of AVO and inversion techniques. Then, a description of effective AVO and prestack inversion tools for reservoir property quantification will be discussed. Finally, the incorporation of the geological interpretation and the use of 3D visualisation will be presented as a key integration tool for the discovery of new plays.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. V75-V80 ◽  
Author(s):  
Muhammad Sajid ◽  
Deva Ghosh

The ability to resolve seismic thin beds is a function of the bed thickness and the frequency content of the seismic data. To achieve high resolution, the seismic data must have broad frequency bandwidth. We developed an algorithm that improved the bandwidth of the seismic data without greatly boosting high-frequency noise. The algorithm employed a set of three cascaded difference operators to boost high frequencies and combined with a simple smoothing operator to boost low frequencies. The output of these operators was balanced and added to the original signal to produce whitened data. The four convolutional operators were quite short, so the algorithm was highly efficient. Synthetic and real data examples demonstrated the effectiveness of this algorithm. Comparison with a conventional whitening algorithm showed the algorithm to be competitive.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2020 ◽  
Author(s):  
Ding Jicai ◽  
Zhao Xiaolong ◽  
Jiang Xiudi ◽  
Wang Yandong ◽  
Huang Xiaogang ◽  
...  

2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Sign in / Sign up

Export Citation Format

Share Document