Quantification of Reservoir Connectivity for Reservoir Description Applications

1998 ◽  
Vol 1 (01) ◽  
pp. 12-17 ◽  
Author(s):  
K.B. Hird ◽  
Olivier Dubrule

Summary This study investigates means for efficiently estimating reservoir performance characteristics of heterogeneous reservoir descriptions with reservoir connectivity parameters. We use simulated primary and waterflood performance for two-dimensional (2D) vertical, two- and three-phase, black oil reservoir systems to identify and quantify spatial characteristics that control well performance. The reservoir connectivity parameters were found to correlate strongly with secondary recovery efficiency and drainable hydrocarbon pore volume. We developed methods for estimating primary recovery and water breakthrough time for a waterflood. We can achieve this estimation with three to five orders of magnitude less computational time than required for comparable flow simulations. Introduction Several geostatistical methods have been developed over the past decade for generating fine-scale, heterogeneous reservoir descriptions. These methods have become popular because of their ability to model heterogeneities, quantify uncertainties, and integrate various data types. However, the quality of results obtained with these stochastic methods is strongly dependent on the underlying assumed model. Reservoir heterogeneities will not be modeled correctly if the appropriate scales of heterogeneities are not considered. Uncertainties in future reservoir performance will not be quantified if the entire range of critical spatial characteristics are not explored. Simulated reservoir performance will not match historical performance if the appropriate data constraints are not imposed. The likelihood of using an inappropriate model can be greatly reduced if production data is integrated into the reservoir description process. This is because production data is influenced by those heterogeneities that impact future rates and recoveries. This paper investigates the applicability of using reservoir connectivity characteristics based on static reservoir properties as predictors of reservoir performance. We investigate two types of reservoir connectivity-based parameters. These connectivity parameters were developed to estimate secondary recovery efficiency and drainable hydrocarbon pore volume (HCPV). We use 2D vertical cross sections in the study. Previous work1–3 investigated the correlation of spatial reservoir parameters on reservoir performance for 2D areal reservoir descriptions. We first describe the general procedure. We then follow with definitions, more specific procedure details, and a discussion of the results for the two reservoir characteristics investigated. General Method We generated sets of permeability realizations, each set honoring at least the "conventional" geostatistical constraints (i.e., the univariate permeability distribution, the permeability variogram, and the wellblock permeabilities). We used simulated annealing4–6 to generate the permeability realizations and a linear porosity vs. log (permeability) relationship to obtain porosity values at each gridblock location. Porosity and permeability were the only heterogeneous reservoir properties considered during the study; reservoir thickness was assumed to be a constant. We performed all the flow simulations at the same scale as the permeability conditional simulations. The two- and three-phase black oil flow simulations were run with Amoco's in-house flow simulator, GCOMP,7 on a Sun SPARC 10 workstation.8 We used flow simulation results and analytical calculations to determine water breakthrough time (tBt) and ultimate primary oil recovery. The results for each flow simulation were plotted vs. values of various spatial permeability and porosity-based parameters. We identified the spatial parameter having the strongest correlation with each simulated performance data type. Recovery Efficiency Definitions. Secondary recovery efficiency is considered to be impacted by interwell reservoir connectivity characteristics. However, reservoir connectivity can be defined many different ways. A method has been reported that uses horizontal and vertical permeability thresholds to transform permeabilities to binary values.9 The least resistive paths are determined by finding the minimum distance required to move from one surface (i.e., a set of adjacent gridblocks) to another, for example, from an injector to a producer. We used a binary indicator approach to simplify the computations, thus resulting in an extremely fast connectivity algorithm. However, the success of the method is dependent on the applicability of the designated cutoff values. Such an approach would be most successful for systems comprised of two rock types (e.g., clean sand and shale), each having a small variance but significantly different means. The permeability distributions used in the present study do not fit in this category. Thus, attempts to correlate secondary recovery efficiency variables with the indicator-based connectivity parameters were unsuccessful. We concluded that a more sophisticated connectivity definition, accounting for actual permeability values, was needed to better quantify interwell reservoir connectivity. As a result of further investigation, the following connectivity parameter was developed for 2D cross sections: where IRe(i, k) is the secondary recovery efficiency "resistivity index" at gridblock (i, k), ?L is the distance between the centers of adjacent gridblocks, ka is the average absolute directional permeability between two adjacent gridblocks, krw(i) is the estimated relative permeability to water for the ith column, and A is the cross-sectional area perpendicular to the direction of movement. For a horizontal step, ?L/A=?Lx/?Lz, whereas for a vertical step, ?L/A=?Lz/?Lx . The resistivity index parameter is derived from the analogy between Darcy's law for linear, single-phase fluid flow, and Ohm's law for linear electric current where I is the electrical current, ?E is the voltage drop, and R is the electrical resistance. Inspection of Eqs. 2 and 3 shows that the permeance of the fluid system, kA/µL, is analogous to the reciprocal of the electrical resistance. Eq. 1 is the multiphase flow equivalent of the reciprocal of the permeance, dropping the viscosity constant µ.

Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 118
Author(s):  
Kseniia Kuzmina ◽  
Ilia Marchevsky ◽  
Irina Soldatova ◽  
Yulia Izmailova

The possibilities of applying the pure Lagrangian vortex methods of computational fluid dynamics to viscous incompressible flow simulations are considered in relation to various problem formulations. The modification of vortex methods—the Viscous Vortex Domain method—is used which is implemented in the VM2D code developed by the authors. Problems of flow simulation around airfoils with different shapes at various Reynolds numbers are considered: the Blasius problem, the flow around circular cylinders at different Reynolds numbers, the flow around a wing airfoil at the Reynolds numbers 104 and 105, the flow around two closely spaced circular cylinders and the flow around rectangular airfoils with a different chord to the thickness ratio. In addition, the problem of the internal flow modeling in the channel with a backward-facing step is considered. To store the results of the calculations, the POD technique is used, which, in addition, allows one to investigate the structure of the flow and obtain some additional information about the properties of flow regimes.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Navaneetha Krishnan Rajan ◽  
Zeying Song ◽  
Kenneth R. Hoffmann ◽  
Marek Belohlavek ◽  
Eileen M. McMahon ◽  
...  

Two-dimensional echocardiography (echo) is the method of choice for noninvasive evaluation of the left ventricle (LV) function owing to its low cost, fast acquisition time, and high temporal resolution. However, it only provides the LV boundaries in discrete 2D planes, and the 3D LV geometry needs to be reconstructed from those planes to quantify LV wall motion, acceleration, and strain, or to carry out flow simulations. An automated method is developed for the reconstruction of the 3D LV endocardial surface using echo from a few standard cross sections, in contrast with the previous work that has used a series of 2D scans in a linear or rotational manner for 3D reconstruction. The concept is based on a generalized approach so that the number or type (long-axis (LA) or short-axis (SA)) of sectional data is not constrained. The location of the cross sections is optimized to minimize the difference between the reconstructed and measured cross sections, and the reconstructed LV surface is meshed in a standard format. Temporal smoothing is implemented to smooth the motion of the LV and the flow rate. This software tool can be used with existing clinical 2D echo systems to reconstruct the 3D LV geometry and motion to quantify the regional akinesis/dyskinesis, 3D strain, acceleration, and velocities, or to be used in ventricular flow simulations.


2018 ◽  
Vol 6 (4) ◽  
pp. T1117-T1139
Author(s):  
Sarah A. Clark ◽  
Matthew J. Pranter ◽  
Rex D. Cole ◽  
Zulfiquar A. Reza

The Cretaceous Burro Canyon Formation in the southern Piceance Basin, Colorado, represents low sinuosity to sinuous braided fluvial deposits that consist of amalgamated channel complexes, amalgamated and isolated fluvial-bar channel fills, and floodplain deposits. Lithofacies primarily include granule-cobble conglomerates, conglomeratic sandstones, cross-stratified sandstones, upward-fining sandstones, and gray-green mudstones. To assess the effects of variable sandstone-body geometry and internal lithofacies and petrophysical heterogeneity on reservoir performance, conventional field methods are combined with unmanned aerial vehicle-based photogrammetry to create representative outcrop-based reservoir models. Outcrop reservoir models and fluid-flow simulations compare three reservoir scenarios of the Burro Canyon Formation based on stratigraphic variability, sandstone-body geometry, and lithofacies heterogeneity. Simulation results indicate that lithofacies variability can account for an almost 50% variation in breakthrough time (BTT). Internal channel-bounding surfaces reduce the BTT by 2%, volumetric sweep efficiency by 8%, and recovery efficiency by 10%. Three lateral grid resolutions and two permeability-upscaling methods for each reservoir scenario are explored in fluid-flow simulations to investigate how upscaling impacts reservoir performance. Our results indicate that coarsely resolved grids experience delayed breakthrough by as much as 40% and greater volumetric sweep efficiency by an average of 10%. Permeability models that are upscaled using a geometric mean preserve slightly higher values than those using a harmonic mean. For upscaling based on a geometric mean, BTTs are delayed by an average of 17% and the volumetric sweep efficiency is reduced by as much as 10%. Results of the study highlight the importance of properly incorporating stratigraphic details into 3D reservoir models and preserving those details through proper upscaling methods.


Author(s):  
Hesham A. Abu Zaid ◽  
◽  
Sherif A. Akl ◽  
Mahmoud Abu El Ela ◽  
Ahmed El-Banbi ◽  
...  

The mechanical waves have been used as an unconventional enhanced oil recovery technique. It has been tested in many laboratory experiments as well as several field trials. This paper presents a robust forecasting model that can be used as an effective tool to predict the reservoir performance while applying seismic EOR technique. This model is developed by extending the wave induced fluid flow theory to account for the change in the reservoir characteristics as a result of wave application. A MATLAB program was developed based on the modified theory. The wave’s intensity, pressure, and energy dissipation spatial distributions are calculated. The portion of energy converted into thermal energy in the reservoir is assessed. The changes in reservoir properties due to temperature and pressure changes are considered. The incremental oil recovery and reduction in water production as a result of wave application are then calculated. The developed model was validated against actual performance of Liaohe oil field. The model results show that the wave application increases oil production from 33 to 47 ton/day and decreases water-oil ratio from 68 to 48%, which is close to the field measurements. A parametric analysis is performed to identify the important parameters that affect reservoir performance under seismic EOR. In addition, the study determines the optimum ranges of reservoir properties where this technique is most beneficial.


1999 ◽  
Author(s):  
Mario Caponnetto ◽  
Alessandro Castelli ◽  
Philippe Dupont ◽  
Bernard Bonjour ◽  
Pierre-Louis Mathey ◽  
...  

The 30th America's Cup will be held in New Zealand, commencing in October 1999. For the first time a Swiss team, the FAST2000 Challenge of the Club Nautique Morgien, will compete. Three laboratories of the EPFL (Ecole Polytechnique Federale de Lausanne) are collaborating with FAST2000 in the design of the boat that will race in the Cup challenges. Present-day design of IACC racing yachts relies on the use of numerical flow simulations to obtain a competitive edge. The computation of the complex hydrodynamic and aerodynamic flows around sailing yachts provides valuable information to supplement the more conventional empirical and experimental design techniques. Such flow simulations, however, are extremely challenging and thus often require state­of-the-art numerical techniques and computer technology. A number of the issues critical to IACC yacht design are discussed, and various approaches described to address them through the use of advanced numerical flow simulation.


SPE Journal ◽  
2021 ◽  
pp. 1-25
Author(s):  
Chang Gao ◽  
Juliana Y. Leung

Summary The steam-assisted gravity drainage (SAGD) recovery process is strongly impacted by the spatial distributions of heterogeneous shale barriers. Though detailed compositional flow simulators are available for SAGD recovery performance evaluation, the simulation process is usually quite computationally demanding, rendering their use over a large number of reservoir models for assessing the impacts of heterogeneity (uncertainties) to be impractical. In recent years, data-driven proxies have been widely proposed to reduce the computational effort; nevertheless, the proxy must be trained using a large data set consisting of many flow simulation cases that are ideally spanning the model parameter spaces. The question remains: is there a more efficient way to screen a large number of heterogeneous SAGD models? Such techniques could help to construct a training data set with less redundancy; they can also be used to quickly identify a subset of heterogeneous models for detailed flow simulation. In this work, we formulated two particular distance measures, flow-based and static-based, to quantify the similarity among a set of 3D heterogeneous SAGD models. First, to formulate the flow-based distance measure, a physics-basedparticle-tracking model is used: Darcy’s law and energy balance are integrated to mimic the steam chamber expansion process; steam particles that are located at the edge of the chamber would release their energy to the surrounding cold bitumen, while detailed fluid displacements are not explicitly simulated. The steam chamber evolution is modeled, and a flow-based distance between two given reservoir models is defined as the difference in their chamber sizes over time. Second, to formulate the static-based distance, the Hausdorff distance (Hausdorff 1914) is used: it is often used in image processing to compare two images according to their corresponding spatial arrangement and shapes of various objects. A suite of 3D models is constructed using representative petrophysical properties and operating constraints extracted from several pads in Suncor Energy’s Firebag project. The computed distance measures are used to partition the models into different groups. To establish a baseline for comparison, flow simulations are performed on these models to predict the actual chamber evolution and production profiles. The grouping results according to the proposed flow- and static-based distance measures match reasonably well to those obtained from detailed flow simulations. Significant improvement in computational efficiency is achieved with the proposed techniques. They can be used to efficiently screen a large number of reservoir models and facilitate the clustering of these models into groups with distinct shale heterogeneity characteristics. It presents a significant potential to be integrated with other data-driven approaches for reducing the computational load typically associated with detailed flow simulations involving multiple heterogeneous reservoir realizations.


1970 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
K. G. Smith

The Basins Study Group is part of the Subsurface Section of the Bureau's Petroleum Exploration Branch and was formed in 1962 to collect and review available basic data on the sedimentary basins of Australia and Papua-New Guinea. The Core and Cuttings Laboratory forms the second part of the Subsurface Section, and the Laboratory's technical staff contribute to basin reviews by carrying out analyses of various kinds, and assist in the collection of data principally by providing thin sections of various sedimentary formations.Recent activities of the Basins Study Group include a review of the Sydney Basin, and an increased effort to assemble basic data on all sedimentary basins, with particular emphasis on the Canning and Carnarvon Basins.The review of the Sydney Basin is nearing completion. It was undertaken with the co-operation of the Geological Survey of New South Wales and received generous support from petroleum exploration companies active in the Basin. The review included detailed petrological examination of twelve wells and selected outcrop samples. The results confirmed the previously-held opinions that the reservoir characteristics of Sydney Basin sediments are generally unfavourable. At present there are no indications of untested onshore areas where an improvement in reservoir properties may occur. The Bureau petrologists detected the rare mineral dawsonite in eight wells; the mineral occurred mostly in Permian sediments, both in marine and non-marine rocks, but it was recorded also from Triassic rocks in the Kurrajong Heights No. 1 well. The review of geophysical data from the Sydney Basin was concentrated mainly on seismic work. The magnetic tapes of three surveys were replayed and considerable improvement in records was effected. Record sections of all seismic surveys were reduced photographically to a horizontal scale of 1:50,000 and the reductions were spliced to provide easily-managed cross-sections. The geophysical review is nearing completion and structure contour maps and isochrons are in preparation.The collection of basic data is done for each sedimentary basin as it becomes available, but present emphasis is on assembling data from Western Australian basins: all seismic traverses in the onshore parts of the Canning and Carnarvon Basins have been plotted at 1:250,000 scale, and with the co-operation of the Geological Survey of Western Australia, bibliographies of the Canning, Carnarvon and Perth Basins have been compiled for issue as Open-file Records. Bibliographies of the Papuan and Ipswich-Clarence Basins have also been compiled.


Sign in / Sign up

Export Citation Format

Share Document