scholarly journals A Study Of Factors Affecting The Stability Of Tailings Sludge Produced By The Hot Water Bitumen Extraction Process

1991 ◽  
Author(s):  
B.D. Sparks ◽  
L.S. Kotlyar ◽  
A. Majid
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 572
Author(s):  
Yue Hu ◽  
David Kamelchuk ◽  
Richard Krygier ◽  
Barb R. Thomas

For the oil sands mine sites in northern Alberta, the presence of salty process affected water, a byproduct of the hot-water bitumen extraction process, is anticipated to pose a challenge on some reconstructed landforms. The fundamental challenge when re-vegetating these sites is to ensure not only survival, but vigorous growth where plants are subjected to conditions of high electrical conductivity owing to salts in process affected water that may be contained in the substrate. Finding plants suitable for high salt conditions has offered the opportunity for Alberta-Pacific Forest Industries Inc. (Al-Pac) to investigate the potential role of using native balsam poplar (Populus balsamifera L.) as a key reclamation species for the oil sands region. Two years of greenhouse screening (2012 and 2013) of 222 balsam poplar clones from Al-Pac’s balsam poplar tree improvement program, using process affected discharge water from an oil sands processing facility in Ft. McMurray, has suggested an opportunity to select genetically suitable native clones of balsam poplar for use in reclamation of challenging sites affected by process water. In consideration of the results from both greenhouse and field testing, there is an opportunity to select genetically suitable native clones of balsam poplar that are tolerant to challenging growing conditions, making them more suitable for planting on saline sites.


2021 ◽  
Vol 2 (2) ◽  
pp. 325-334
Author(s):  
Neda Javadi ◽  
Hamed Khodadadi Tirkolaei ◽  
Nasser Hamdan ◽  
Edward Kavazanjian

The stability (longevity of activity) of three crude urease extracts was evaluated in a laboratory study as part of an effort to reduce the cost of urease for applications that do not require high purity enzyme. A low-cost, stable source of urease will greatly facilitate engineering applications of urease such as biocementation of soil. Inexpensive crude extracts of urease have been shown to be effective at hydrolyzing urea for carbonate precipitation. However, some studies have suggested that the activity of a crude extract may decrease with time, limiting the potential for its mass production for commercial applications. The stability of crude urease extracts shown to be effective for biocementation was studied. The crude extracts were obtained from jack beans via a simple extraction process, stored at room temperature and at 4 ℃, and periodically tested to evaluate their stability. To facilitate storage and transportation of the extracted enzyme, the longevity of the enzyme following freeze drying (lyophilization) to reduce the crude extract to a powder and subsequent re-hydration into an aqueous solution was evaluated. In an attempt to improve the shelf life of the lyophilized extract, dextran and sucrose were added during lyophilization. The stability of purified commercial urease following rehydration was also investigated. Results of the laboratory tests showed that the lyophilized crude extract maintained its activity during storage more effectively than either the crude extract solution or the rehydrated commercial urease. While incorporating 2% dextran (w/v) prior to lyophilization of the crude extract increased the overall enzymatic activity, it did not enhance the stability of the urease during storage.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3870
Author(s):  
Jingyang Li ◽  
Fei Liu ◽  
Hua Yu ◽  
Yuqi Li ◽  
Shiguang Zhou ◽  
...  

Banana is a major fruit crop throughout the world with abundant lignocellulose in the pseudostem and rachis residues for biofuel production. In this study, we collected a total of 11 pseudostems and rachis samples that were originally derived from different genetic types and ecological locations of banana crops and then examined largely varied edible carbohydrates (soluble sugars, starch) and lignocellulose compositions. By performing chemical (H2SO4, NaOH) and liquid hot water (LHW) pretreatments, we also found a remarkable variation in biomass enzymatic saccharification and bioethanol production among all banana samples examined. Consequently, this study identified a desirable banana (Refen1, subgroup Pisang Awak) crop containing large amounts of edible carbohydrates and completely digestible lignocellulose, which could be combined to achieve the highest bioethanol yields of 31–38% (% dry matter), compared with previously reported ones in other bioenergy crops. Chemical analysis further indicated that the cellulose CrI and lignin G-monomer should be two major recalcitrant factors affecting biomass enzymatic saccharification in banana pseudostems and rachis. Therefore, this study not only examined rich edible carbohydrates for food in the banana pseudostems but also detected digestible lignocellulose for bioethanol production in rachis tissue, providing a strategy applicable for genetic breeding and biomass processing in banana crops.


2021 ◽  
pp. 1-36
Author(s):  
Vahideh Angardi ◽  
Ali Ettehadi ◽  
Özgün Yücel

Abstract Effective separation of water and oil dispersions is considered a critical step in the determination of technical and economic success in the petroleum industry over the years. Moreover, a deeper understanding of the emulsification process and different affected parameters is essential for cost-effective oil production, transportation, and downstream processing. Numerous studies conducted on the concept of dispersion characterization indicate the importance of this concept, which deserves attention by the scientific community. Therefore, a comprehensive review study with critical analysis on significant concepts will help readers follow them easily. This study is a comprehensive review of the concept of dispersion characterization and conducted studies recently published. The main purposes of this review are to 1) Highlight flaws, 2) Outline gaps and weaknesses, 3) Address conflicts, 4) Prevent duplication of effort, 5) List factors affecting dispersion. It was found that the separation efficiency and stability of dispersions are affected by different chemical and physical factors. Factors affecting the stability of the emulsions have been studied in detail and will help to look for the right action to ensure stable emulsions. In addition, methods of ensuring stability, especially coalescence are highlighted, and coalescence mathematical explanations of phenomena are presented.


2017 ◽  
Vol 73 (7) ◽  
pp. 618-625 ◽  
Author(s):  
Nicole Balasco ◽  
Luciana Esposito ◽  
Luigi Vitagliano

The protein folded state is the result of the fine balance of a variety of different forces. Even minor structural perturbations may have a significant impact on the stability of these macromolecules. Studies carried out in recent decades have led to the convergent view that proteins are endowed with a flexible spine. One of the open issues related to protein local backbone geometry is the identification of the factors that influence the amplitude of the τ (N—Cα—C) angle. Here, statistical analyses performed on an updated ensemble of X-ray protein structures by dissecting the contribution of the major factors that can potentially influence the local backbone geometry of proteins are reported. The data clearly indicate that the local backbone conformation has a prominent impact on the modulation of the τ angle. Therefore, a proper assessment of the impact of the other potential factors can only be appropriately evaluated when small (φ, ψ) regions are considered. Here, it is shown that when the contribution of the backbone conformation is removed by considering small (φ, ψ) areas, an impact of secondary structure, as defined byDSSP, and/or the residue type on τ is still detectable, although to a limited extent. Indeed, distinct τ-value distributions are detected for Pro/Gly and β-branched (Ile/Val) residues. The key role of the local backbone conformation highlighted here supports the use of variable local backbone geometry in protein refinement protocols.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Nam Young Kim ◽  
Woon Yong Choi ◽  
Soo Jin Heo ◽  
Do Hyung Kang ◽  
Hyeon Yong Lee

Objectives. This work aimed to enhance anti-skin cancer activities of Apostichopus japonicus, spiky sea cucumber, through ultrasonification extraction process at low temperature. Methods. Dried Apostichopus japonicus was extracted with an ultrasonification process at 50°C and 95 kHz for two hours (UE), and anti-skin cancer activities of the extract from the UE were also compared with those from conventional extraction processes using hot water (WE) or 70% ethanol at 80°C (EE) for 12 hours. Results. The amount of canthaxanthin in the UE was higher than that in the WE or EE, and its cytotoxicity against human keratinocytes was less than the others. The extract from the UE showed 93.5% inhibition against human malignant cell growth, which was also higher than those from both WE and EE. The extract from the UE demonstrated the ability of inhibiting both cancer cell proliferation and metastasis by downregulating the skin tumor-promoting genes such as Bcl-2, STAT3, and MMP-9. Conclusions. The ultrasonification process was proved to be effective especially in extracting heat-sensitive marine biomass, A. japonicus having higher amounts of canthaxanthin and better anti-skin cancer activities, possibly due to less destruction and high elution of bioactive substances under low temperature extraction condition.


2013 ◽  
Author(s):  
J. Rick Griffin ◽  
James R Johnstone ◽  
Terry E Cotter ◽  
Ashleigh E O'Brien

1991 ◽  
Vol 64 (12) ◽  
pp. 3659-3661 ◽  
Author(s):  
Mohammd Rafiqe Ullah ◽  
Pabithrak K. Bhattacharya

Sign in / Sign up

Export Citation Format

Share Document