Development of Novel Test Methodology to Understand the Mechanisms of Halite Inhibition and Environmentally Acceptable Halite Scale Inhibitors for High Temperature Application

2014 ◽  
Author(s):  
Kimberley Ho ◽  
Tao Chen ◽  
Ping Chen ◽  
Thomas Hagen ◽  
Harry Montgomerie ◽  
...  

Abstract Halite deposition is most commonly observed in gas/gas condensate fields with low water cut, high TDS produced brines and high temperature. Halite is notoriously difficult to inhibit and there are limited studies focused on halite due to it being incredibly challenging to have an effective test methodology under laboratory conditions that reflect the field conditions. The mechanisms of halite inhibition are unclear. In the published literature, static jar testing is primarily used to evaluate the performance of halite inhibitors. It is not representative of dynamic field conditions and provides limited information of halite inhibition. A new methanol driven dynamic test methodology has been developed alongside a novel jar test procedure, which together provides an effective methodology to evaluate halite inhibition under both static and dynamic conditions and provides an insight into the understanding of the mechanisms of halite inhibition. Using these novel test methodologies, four short-listed inhibitor chemistries including environmentally acceptable inhibitors were assessed and categorised into two types based on the understanding of the mechanism. ➤ Nucleation/growth inhibitors. Inhibitors reduce the nucleation/growth of halite crystals and give good performance under both static and dynamic test conditions.➤ Dispersion inhibitors. Inhibitor doesn't stop the nucleation/growth of halite crystals and gives poor performance under static conditions, but good performance under dynamic conditions due to dispersion effect. Both types of halite inhibitors have been successfully deployed in the fields through continuous injection or batch treatment. Coreflood tests were carried out to confirm the potential risk of formation damage during downhole batch treatment. Other deployment methods have been discussed such as through methanol injection line as both inhibitors are fully methanol compatible. This paper will give a comprehensive study of halite inhibition for challenged wells, including prediction, novel methodology, program of laboratory qualification, mechanism understanding and field deployment, coupled to the development of a chemical technology toolbox to design field halite applications. The value that a fuller understanding of halite control gives the industry is the ability to reduce/eliminate water wash application to control halite formation and so improve well operation time. If halite inhibition is considered at the capex phase of field development, provisions can be made for chemical injection facilities to maintain uninterrupted production.

2002 ◽  
Author(s):  
Raymond J. Hughes ◽  
Lance K. Lewis ◽  
Barry M. Hare ◽  
Yoshiyuki Ishikawa ◽  
Kazuo Iwasaki ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 1554
Author(s):  
Tadas Dambrauskas ◽  
Kestutis Baltakys ◽  
Agne Grineviciene ◽  
Valdas Rudelis

In this work, the influence of various hydroxide and salt additives on the removal of F− ions from silica gel waste, which is obtained during the production of AlF3, was examined. The leaching of the mentioned ions from silica gel waste to the liquid medium was achieved by the application of different techniques: (1) leaching under static conditions; (2) leaching under dynamic conditions by the use of continuous liquid medium flow; and (3) leaching in cycles under dynamic conditions. It was determined that the efficiency of the fluoride removal from this waste depends on the w/s ratio, the leaching conditions, and the additives used. It was proven that it is possible to reduce the concentration of fluorine ions from 10% to <5% by changing the treatment conditions and by adding alkaline compounds. The silica gel obtained after the leaching is a promising silicon dioxide source.


2015 ◽  
Author(s):  
Mahmoud Asadi ◽  
Brain Ainley ◽  
David Archacki ◽  
Eric Aubry ◽  
Harold Brannon ◽  
...  

Abstract Historically, leak-off analyses of stimulation fluids have been performed using in-house laboratory procedures. The lack of industry standard procedures to perform leak-off and wall building coefficient analyses of stimulation fluids has introduced inconsistency in both results and reporting for many years. A technical standard adopted in 2006 by both API and ISO for static conditions has provided the oil and gas industry with the first standardized procedure to measure and report leak-off1. However, the more complex testing under dynamic conditions was not addressed. As a result, a group of industry experts have compiled their years of experiences in developing a new technical standard to measure the leak-off characteristics of stimulation and gravel-pack fluids under dynamic flow conditions. Stimulation and gravel-pack fluids are defined, for the purpose of this technical standard, as fluids used to enhance production from oil and gas wells by fracturing and fluids used to place filtration media to control formation sand production from oil and gas wells. Leak-off is the amount of fluid lost to porous media during these operations. The leak-off procedure was developed through the colaberation of several industry companies by evaluating numerous in-house laboratory techniques and conducting round robin testing to ensure that any modifications to these procedures were reliable and repeatable. The new standard provides a step-by-step procedure that includes fluid preparation, experimental equipment design, testing procedure and data analyses for fluids exhibiting viscosity controlled leak-off or wall building characteristics. Example calculations are reviewed within this paper.


2021 ◽  
Author(s):  
S.A. Baloch ◽  
J.M. Leon ◽  
S.K. Masalmeh ◽  
D. Chappell ◽  
J. Brodie ◽  
...  

Abstract Over the last few years, ADNOC has systematically investigated a new polymer-based EOR scheme to improve sweep efficiency in high temperature and high salinity (HTHS) carbonate reservoirs in Abu Dhabi (Masalmeh et al., 2014). Consequently, ADNOC has developed a thorough de-risking program for the new EOR concept in these carbonate reservoirs. The de-risking program includes extensive laboratory experimental studies and field injectivity tests to ensure that the selected polymer can be propagated in the target reservoirs. A new polymer with high 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) content was identified, based on extensive laboratory studies (Masalmeh, et al., 2019, Dupuis, et al., 2017, Jouenne 2020), and an initial polymer injectivity test (PIT) was conducted in 2019 at 250°F and salinity &gt;200,000 ppm, with low H2S content (Rachapudi, et al., 2020, Leon and Masalmeh, 2021). The next step for ADNOC was to extend polymer application to harsher field conditions, including higher H2S content. Accordingly, a PIT was designed in preparation for a multi-well pilot This paper presents ADNOC's follow-up PIT, which expands the envelope of polymer flooding to dissolve H2S concentrations of 20 - 40 ppm to confirm injectivity at representative field conditions and in situ polymer performance. The PIT was executed over five months, from February 2021 to July 2021, followed by a chase water flood that will run until December 2021. A total of 108,392 barrels of polymer solution were successfully injected during the PIT. The extensive dataset acquired was used to assess injectivity and in-depth mobility reduction associated with the new polymer. Preliminary results from the PIT suggest that all key performance indicators have been achieved, with a predictable viscosity yield and good injectivity at target rates, consistent with the laboratory data. The use of a down-hole shut-in tool (DHSIT) to acquire pressure fall-off (PFO) data clarified the near-wellbore behaviour of the polymer and allowed optimisation of the PIT programme. This paper assesses the importance of water quality on polymer solution preparation and injection performance and reviews operational data acquired during the testing period. Polymer properties determined during the PIT will be used to optimise field and sector models and will facilitate the evaluation of polymer EOR in other giant, heterogeneous carbonate reservoirs, leading to improved recovery in ADNOC and Middle East reservoirs.


2016 ◽  
Vol 824 ◽  
pp. 18-26 ◽  
Author(s):  
Barbora Nečasová ◽  
Pavel Liška ◽  
Jiří Šlanhof ◽  
Martina Šimáčková

The authors of presented research case focused on possibilities of sealing porous as well as non – porous materials and analysed the measured results. It is the second article of the above mentioned authors dealing with sealed joints, however, in this case study the focus was placed on a group of industrially manufactured modified silyl polymer and polyurethane sealants. The research is based on the modified test procedure for the determination of adhesion and cohesion properties during maintained extension at variable temperatures, i.e. a high temperature of (70 + 2) °C and a temperature simulating freezing, i.e. (-20 + 2) °C, according to the European standard EN ISO 9047. The degree of specimen extension was set to amplitude of 20.0 % and the aim of the research case was to discover any differences that might appear in the resistance. The measured results demonstrate that there are significant differences between individual sealants in the results they provide in combination with specific material, e.g. wood appears to be a problematic substrate as well as glass cement or aluminium.


2021 ◽  
Vol 4 (2) ◽  
pp. 83-96
Author(s):  
Abdillah Aziz Muntashir ◽  
Era Purwanto ◽  
Bambang Sumantri ◽  
Hanif Hasyier FAkhruddin ◽  
Raden Akbar Nur Apriyanto

A three-phase induction motor is often used in everyday life because of its high reliability. However, it is associated with some disadvantages, including difficulties in maintaining constant speed during load changes and speed regulation due to the decoupled system. Therefore, this study aims to adjust the three-phase induction motor control to become a separate amplifier DC motor by setting the vector control using the IFOC method, which changes the coupled to the decoupled system. The speed settings are equipped with a PID controller where its parameters, which are obtained using Ziegler Nichols, produce speed output with fast research time and small steady-state errors. This research was conducted to observe and analyze the performance of a controller based on the IFOC approach with a PID controller at speed differences, with static and dynamic conditions in the entire speed working area. In the first stage of the research, simulation is carried out with static conditions, namely changes in speed variations throughout the work area (low speed to high speed), the next stage is a simulation with dynamic conditions, which is to provide changes in the value of the load torque when the system is operating. The simulation result carried out with LabVIEW shows a response time of 1.13 ms, a settling time of 9.9 ms, and a steady error of 0.4% at the 500 Rpm set point. It also indicated dynamic characteristics with a recovery time of 4.9 ms at the 300 Rpm set point. When operated at low speed, IFOC with PID controller has a stable response. But In dynamic conditions, the use of a PID controller is considered unsuitable. This is because the PID controller is less fast and less robust in responding to the system when conditions change in the value of the load torque.


1965 ◽  
Vol 52 ◽  
pp. 1-42
Author(s):  
E Bondesen ◽  
N Henriksen

After their consolidation, the Ketilidian gneisses were transversed by several generations of tensional, doleritic dykes-the Kuánitic dykes. During a later episode (the Sánerutian) these dykes were metamorphosed to varying degrees of alteration which increase in the described area from west to east. Along a specific metadolerite, which can be traced approx. 40 km, the metamorphic grade changes from greenschist to amphibolite facies. In the western parts static conditions and in the eastern parts dynamic conditions, prevailed during the alteration. Sánerutian shear zones in the eastern parts depict the dynamic conditions found here.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1299
Author(s):  
Chen Zhang ◽  
Dongsheng Li ◽  
Xiaoqiang Li ◽  
Yong Li

The tension-compression asymmetry (TCA) behavior of an extruded titanium alloy at high temperatures has been investigated experimentally in this study. Uniaxial tensile and compressive tests were conducted from 923 to 1023 K with various strain rates under quasi-static conditions. The corresponding yield stress and asymmetric strain hardening behavior were obtained and analyzed. In addition, the microstructure at different temperatures and stress states indicates that the extruded TA15 profile exhibits a significant yield stress asymmetry at different testing temperatures. The flow stress and yield stress during tension are greater than compression. The yield stress asymmetry decreases with the increase in temperature. The alloy also exhibits TCA behavior on the strain hardening rate. Its mechanical response during compression is more sensitive than tension. A dynamic recrystallization phenomenon is observed instead of twin generated in tension and compression under high-temperature quasi-static conditions. The grains are elongated along the tensile direction and deformed by about 45° along the compressive load axis. Finally, the TCA of Ti-6.5Al-2Zr-1Mo-1V (TA15) alloy is due to slip displacement. The tensile deformation activates basal <a>, prismatic <a> and pyramidal <c + a> slip modes, while the compressive deformation activates only prismatic <a> and pyramidal <c + a> slip modes.


2022 ◽  
Vol 6 (4) ◽  
pp. 387-394
Author(s):  
D. S. Galchenko ◽  
M. G. Smirnova ◽  
L. I. Sokolova

The problem of wastewater treatment from residual antibiotics is of particular relevance, since these drugs are used in many agricultural sectors. Antibiotics get into water, animal and human bodies, where they can accumulate negatively affecting health. The aim of this article is to study the possibility of using natural aluminosilicate vermiculite sorbent from the Koksharovskoye field (Primorsky Region) for purifying fish processing and fish farming enterprises’ waste water from antibiotics (chloramphenicol, tetracycline, cefazolin, cefuroxime, ceftriaxone, cefepime and and ciprofloxacin) under static and dynamic conditions. The study was carried out on a model wastewater system with injected antibiotics. The purification ability of the model system using the method of spectrophotometric antibiotics detection is analyzed. Under static conditions, the total content of antibiotics varied from 0.25 mg to 1.00 mg per 1 g of sorbent. Under dynamic conditions, the antibiotic content was 0.025 mg per 1 g of sorbent. High values of absorption for all studied antibiotics, except for chloramphenicol, were achieved both in static and dynamic modes. For chloramphenicol, when examined under static conditions, the maximum absorption rate was 45% with the minimum total concentration of antibiotics. With an increase in the load on the sorbent, the degree of absorption decreased to 3%. Thus, vermiculite modified with 7% hydrochloric acid is a promising sorbent for cleaning water bodies from residual antibiotics.


Sign in / Sign up

Export Citation Format

Share Document