scholarly journals Maternal effects shape the alternative splicing of parental alleles in reciprocal cross hybrids of Megalobrama amblycephala ´ Culter alburnus

2020 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Xin Gao ◽  
Jialin Cui ◽  
Pengcheng Yan ◽  
...  

Abstract Background : Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animals. Results: Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. In a comparison of BSB- and TC- homoeolog expression from the two reciprocal cross hybrids, we identified 49–348 differentially expressed BSB-homoeologous genes and 54–354 differentially expressed TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonads, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF3. These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a belonged to the bone morphogenetic protein family were selected as an AS model to investigate expression diversity and their potential effects to body shape traits.Conclusions: The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects were the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.

2020 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Xin Gao ◽  
Jialin Cui ◽  
Pengcheng Yan ◽  
...  

Abstract Background Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animals. Results Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. In a comparison of BSB- and TC- homoeolog expression from the two reciprocal cross hybrids, we identified 49–348 differentially expressed BSB-homoeologous genes and 54–354 differentially expressed TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonads, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF3. These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a belonged to the bone morphogenetic protein family were selected as an AS model to investigate expression diversity and their potential effects to body shape traits.Conclusions The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects were the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.


2020 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Xin Gao ◽  
Jialin Cui ◽  
Pengcheng Yan ◽  
...  

Abstract Background Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animals. Results Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. In a comparison of BSB- and TC- homoeolog expression from the two reciprocal cross hybrids, we identified 49–348 differentially expressed BSB-homoeologous genes and 54–354 differentially expressed TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonads, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF 3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF 3 . These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a belonged to the bone morphogenetic protein family were selected as an AS model to investigate expression diversity and their potential effects to body shape traits. Conclusions The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects were the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.


2019 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Xin Gao ◽  
Jialin Cui ◽  
Pengcheng Yan ◽  
...  

Abstract Background Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animal. Results Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. In a comparison of BSB and TC homoeolog expression from the two reciprocal cross hybrids, we identified 49–347 differentially expressed BSB-homoeologous genes and 54–354 TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonads, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TB F3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BT F3 homoeologous gene pairs. These results further improve AS prediction at the homoeolog level. To analyze body shape traits, bmpr2a of the bone morphogenetic protein family was selected as an AS model to investigate expression diversity. Conclusions The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects are the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.


2019 ◽  
Author(s):  
Li Ren ◽  
Xiaojing Yan ◽  
Xin Gao ◽  
Jialin Cui ◽  
Wuhui Li ◽  
...  

Abstract Abstract Background Maternal effects contribute to adaptive significance for shaping various phenotypes of many traits. Potential implications of maternal effects are the cause of expression diversity, but these effects on mRNA expression and alternative splicing (AS) have not been fully elucidated in hybrid animal. Results Two reciprocal cross hybrids following hybridization of Megalobrama amblycephala (blunt snout bream, BSB) and Culter alburnus (topmouth culter, TC) were used as a model to investigate maternal effects. In a comparison of BSB and TC homoeolog expression from the two reciprocal cross hybrids, we identified 49–347 differentially expressed BSB-homoeologous genes and 54–354 TC-homoeologous genes. 2402, 2959, and 3418 AS events between the two reciprocal cross hybrids were detected in Illumina data of muscle, liver, and gonads, respectively. Moreover, 21,577 (TC-homoeologs) and 30,007 (BSB-homoeologs) AS events were found in the 20,131 homoeologous gene pairs of TBF 3 based on PacBio data, while 30,561 (TC-homoeologs) and 30,305 (BSB-homoeologs) AS events were found in BTF 3 homoeologous gene pairs. These results further improve AS prediction at the homoeolog level. The various AS patterns in bmpr2a with belonged to the bone morphogenetic protein family was selected as an AS model to investigate expression diversity and their potential effects to body shape traits. Conclusions The distribution of differentially expressed genes and AS in BSB- and TC-subgenomes exhibited various changes between the two reciprocal cross hybrids, suggesting that maternal effects are the cause of expression diversity. These findings provide a novel insight into mRNA expression changes and AS under maternal effects in lower vertebrates.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wuhui Li ◽  
Shi Wang ◽  
Jie Hu ◽  
Chenchen Tang ◽  
Chang Wu ◽  
...  

Abstract Background Hybridization, which can quickly merge two or more divergent genomes and form new allopolyploids, is an important technique in fish genetic breeding. However, the merged subgenomes must adjust and coexist with one another in a single nucleus, which may cause subgenome interaction and dominance at the gene expression level and has been observed in some allopolyploid plants. In our previous studies, newly formed allodiploid hybrid fish derived from herbivorous Megalobrama amblycephala (♀) × carnivorous Culter alburnus (♂) had herbivorous characteristic. It is thus interesting to further characterize whether the subgenome interaction and dominance derive dietary adaptation of this hybrid fish. Results Differential expression, homoeolog expression silencing and bias were investigated in the hybrid fish after 70 days of adaptation to carnivorous and herbivorous diets. A total of 2.65 × 108 clean reads (74.06 Gb) from the liver and intestinal transcriptomes were mapped to the two parent genomes based on specific SNPs. A total of 2538 and 4385 differentially expressed homoeologous genes (DEHs) were identified in the liver and intestinal tissues between the two groups of fish, respectively, and these DEHs were highly enriched in fat digestion and carbon metabolism, amino acid metabolism and steroid biosynthesis. Furthermore, subgenome dominance were observed in tissues, with paternal subgenome was more dominant than maternal subgenome. Moreover, subgenome expression dominance controlled functional pathways in metabolism, disease, cellular processes, environment and genetic information processing during the two dietary adaptation processes. In addition, few but sturdy villi in the intestine, significant fat accumulation and a higher concentration of malondialdehyde in the liver were observed in fish fed carnivorous diet compared with fish fed herbivorous diet. Conclusions Our results indicated that diet drives phenotypic and genetic variation, and the asymmetric expression of homoeologous genes (including differential expression, expression silencing and bias) may play key roles in dietary adaptation of hybrid fish. Subgenome expression dominance may contribute to uncovering the mechanistic basis of heterosis and also provide perspectives for fish genetic breeding and application.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 506
Author(s):  
Xiaolong Wang ◽  
Yongliang Fan ◽  
Yifan He ◽  
Ziyin Han ◽  
Zaicheng Gong ◽  
...  

Staphylococcus aureus- induced mastitis is one of the most intractable problems for the dairy industry, which causes loss of milk yield and early slaughter of cows worldwide. Few studies have used a comprehensive approach based on the integrative analysis of miRNA and mRNA expression profiles to explore molecular mechanism in bovine mastitis caused by S. aureus. In this study, S. aureus (A1, B1 and C1) and sterile phosphate buffered saline (PBS) (A2, B2 and C2) were introduced to different udder quarters of three individual cows, and transcriptome sequencing and microarrays were utilized to detected miRNA and gene expression in mammary glands from the challenged and control groups. A total of 77 differentially expressed microRNAs (DE miRNAs) and 1625 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple DEGs were enriched in significant terms and pathways associated with immunity and inflammation. Integrative analysis between DE miRNAs and DEGs proved that miR-664b, miR-23b-3p, miR-331-5p, miR-19b and miR-2431-3p were potential factors regulating the expression levels of CD14 Molecule (CD14), G protein subunit gamma 2 (GNG2), interleukin 17A (IL17A), collagen type IV alpha 1 chain (COL4A1), microtubule associated protein RP/EB family member 2 (MAPRE2), member of RAS oncogene family (RAP1B), LDOC1 regulator of NFKB signaling (LDOC1), low-density lipoprotein receptor (LDLR) and S100 calcium binding protein A9 (S100A9) in bovine mastitis caused by S. aureus. These findings could enhance the understanding of the underlying immune response in bovine mammary glands against S. aureus infection and provide a useful foundation for future application of the miRNA–mRNA-based genetic regulatory network in the breeding cows resistant to S. aureus.


Author(s):  
Mayukh Banerjee ◽  
Ana Ferragut Cardoso ◽  
Laila Al-Eryani ◽  
Jianmin Pan ◽  
Theodore S. Kalbfleisch ◽  
...  

AbstractChronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Yu Wang ◽  
Wenxue Li ◽  
Diancheng Li ◽  
Yuwei Xin ◽  
...  

Abstract Background: Colorectal cancer (CRC) is one of the most common malignancies of the digestive system; the progression and prognosis of which are affected by a complicated network of genes and pathways. The aim of this study was to identify potential hub genes associated with the progression and prognosis of colorectal cancer (CRC).Methods: We obtained gene expression profiles from GEO database to search differentially expressed genes (DEGs) between CRC tissues and normal tissue. Subsequently, we conducted a functional enrichment analysis, generated a protein–protein interaction (PPI) network to identify the hub genes, and analyzed the expression validation of the hub genes. Kaplan–Meier plotter survival analysis tool was performed to evaluate the prognostic value of hub genes expression in CRC patients.Results: A total of 370 samples, involving CRC and normal tissues were enrolled in this article. 283 differentially expressed genes (DEGs), including 62 upregulated genes and 221 downregulated genes between CRC and normal tissues were selected. We finally filtered out 6 hub genes, including INSL5, MTIM, GCG, SPP1, HSD11B2, and MAOB. In the database of TCGA-COAD, the mRNA expression of INSL5, MT1M, HSD11B2, MAOB in tumor is lower than that in normal; the mRNA expression of SPP1 in tumor is higher than that in normal. In the HPA database, the expression of INSL5, GCG, HSD11B2, MAOB in tumor is lower than that in normal tissues; the expression of SPP1 in the tumor is higher than that in normal tissues. Survival analysis revealed that INSL5, GCG, SPP1 and MT1M may serve as prognostic biomarkers in CRC. Conclusions: We screened out six hub genes to predict the occurrence and prognosis of patients with CRC using bioinformatics methods, which may provide new targets and ideas for diagnosis, prognosis and individualized treatment for CRC.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ursula Rauch ◽  
Andreas Eisenreich ◽  
Wolfgang Poller ◽  
Heinz-Peter Schultheiss

Background: Higher eukaryotes control gene expression and increase protein diversity by alternative splicing of pre-mRNA. The Cdc2-like kinase (Clk) family, DNA topoisomerase I (DNA topo I) or Akt kinase are involved in splicing control by regulating the phosphorylation state of serine/arginine rich (SR) proteins. We recently showed that alternatively spliced human tissue factor (asHTF), a soluble isoform of tissue factor (TF), the primary initiator of coagulation, is expressed in HUVECs in response to inflammatory cytokines. This study investigated the role of Clks, DNA topo I and the PI3K-Pathway in regulation of TF-splicing in TNF-α induced HUVECs. Methods: HUVECs were incubated with inhibitors of Clks, DNA-topo I or PI3K and were then stimulated with TNF-α. The SR protein phosphorylation state was determined 2 min post induction. The full length (fl) TF and asHTF mRNA were assessed 60 min post induction by Real-Time PCR. Proteins were measured 5 and 8 hours after stimulation by Western blots and the cell thrombogenicity was analyzed via a chromogenic assay. Results: TNF-α inceased the mRNA expression of asHTF and flTF in HUVECs. The Clk-inhibitor completely inhibited the TNF-α induced expression of asHTF and reduced flTF by 30 %. Inhibition of DNA topo I increased asHTF expression and reduced the flTF expression. Inhibition of the PI3K/Akt-pathway had no effect on TF mRNA expression. Reduced Clk-inhibition the TF activity by 50 % whereas DNA topo I inhibition significantly decreased the procoagulant TF activity 8 hours post TNF-α induction. The Clk- and DNA-topo I-inhibitors altered the SR-protein phosphorylation pattern post TNF-α-induction. Additionally resulted inhibition of Clks in the generation of a third TF mRNA-splice variant, TF-A. Conclusion: Selective inhibition of Clks or DNA topo I leads to alterations of SR-protein phosphorylation and affects the differential expression of TF isoforms, thereby modulating the thrombogenicity of HUVECs. The inhibition of Clks contributes to the generation of a third TF splice variant. The inhibition of these kinases gives new insights into the regulation of the TF gene splicing process, which may result in new therapeutic strategies for modulating cellular thrombogenicity.


Sign in / Sign up

Export Citation Format

Share Document