scholarly journals MRI-based Radiomics of Rectal Cancer: Preoperative Assessment of the Pathological Features

2019 ◽  
Author(s):  
Xiaolu Ma ◽  
Fu Shen ◽  
Yan Jia ◽  
Yuwei Xia ◽  
Qihua Li ◽  
...  

Abstract [EXSCINDED] Abstract Background This study aimed to evaluate the significance of MRI-based radiomics model derived from high-resolution T2-weighted images (T2WIs) in predicting tumor pathological features of rectal cancer.Methods A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-tesla magnetic resonance imaging, and high-resolution T2WIs were obtained. Lesions were delineated, and 1029 radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and multilayer perceptron (MLP), logistic regression, support vector machine (SVM), decision tree, random forest (RF), and K-nearest neighbor were trained using fivefold cross-validation to build a prediction model. The diagnostic performance of the prediction models was assessed using the receiver operating characteristic curves.Results A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUC), 0.862; 95% confidence interval (CI), 0.750–0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and RF (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%).Conclusion This study demonstrated that the high-resolution T2WI–based radiomics model could serve as pretreatment biomarkers in predicting pathological features of rectal cancer.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaolu Ma ◽  
Fu Shen ◽  
Yan Jia ◽  
Yuwei Xia ◽  
Qihua Li ◽  
...  

Abstract Background This study aimed to evaluate the significance of MRI-based radiomics model derived from high-resolution T2-weighted images (T2WIs) in predicting tumor pathological features of rectal cancer. Methods A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-T magnetic resonance imaging, and high-resolution T2WIs were obtained. Lesions were delineated, and 1029 radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and multilayer perceptron (MLP), logistic regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) were trained using fivefold cross-validation to build a prediction model. The diagnostic performance of the prediction models was assessed using the receiver operating characteristic curves. Results A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUC), 0.862; 95% confidence interval (CI), 0.750–0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and RF (AUC, 0.746; 95% CI, 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%). Conclusion This study demonstrated that the high-resolution T2WI–based radiomics model could serve as pretreatment biomarkers in predicting pathological features of rectal cancer.


2019 ◽  
Author(s):  
Xiaolu Ma ◽  
Fu Shen ◽  
Yan Jia ◽  
Yuwei Xia ◽  
Qihua Li ◽  
...  

Abstract [EXSCINDED] Abstract Background This study aimed to evaluate the significance of MRI-based radiomics model derived from high-resolution T2-weighted images (T2WIs) in predicting tumor pathological features of rectal cancer.Methods A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-tesla magnetic resonance imaging, and high-resolution T2WIs were obtained. Lesions were delineated, and 1029 radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and multilayer perceptron (MLP), logistic regression, support vector machine (SVM), decision tree, random forest (RF), and K-nearest neighbor were trained using fivefold cross-validation to build a prediction model. The diagnostic performance of the prediction models was assessed using the receiver operating characteristic curves.Results A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUC), 0.862; 95% confidence interval (CI), 0.750–0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and RF (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%).Conclusion This study demonstrated that the high-resolution T2WI–based radiomics model could serve as pretreatment biomarkers in predicting pathological features of rectal cancer.


2019 ◽  
Author(s):  
Xiaolu Ma ◽  
Fu Shen ◽  
Yan Jia ◽  
Yuwei Xia ◽  
Qihua Li ◽  
...  

Abstract [EXSCINDED] Abstract Abstract Abstract Background This study aimed to evaluate the significance of MRI-based radiomics model derived from high-resolution T2-weighted images (T2WIs) in predicting tumor pathological features of rectal cancer.Methods A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-tesla magnetic resonance imaging, and high-resolution T2WIs were obtained. Lesions were delineated, and 1029 radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and multilayer perceptron (MLP), logistic regression, support vector machine (SVM), decision tree, random forest (RF), and K-nearest neighbor were trained using fivefold cross-validation to build a prediction model. The diagnostic performance of the prediction models was assessed using the receiver operating characteristic curves.Results A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUC), 0.862; 95% confidence interval (CI), 0.750–0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%), and RF (AUC, 0.809; 95% CI, 0.690–0.905; sensitivity, 76.2%; specificity, 74.1%).Conclusion This study demonstrated that the high-resolution T2WI–based radiomics model could serve as pretreatment biomarkers in predicting pathological features of rectal cancer.


2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1692 ◽  
Author(s):  
Iván Silva ◽  
José Eugenio Naranjo

Identifying driving styles using classification models with in-vehicle data can provide automated feedback to drivers on their driving behavior, particularly if they are driving safely. Although several classification models have been developed for this purpose, there is no consensus on which classifier performs better at identifying driving styles. Therefore, more research is needed to evaluate classification models by comparing performance metrics. In this paper, a data-driven machine-learning methodology for classifying driving styles is introduced. This methodology is grounded in well-established machine-learning (ML) methods and literature related to driving-styles research. The methodology is illustrated through a study involving data collected from 50 drivers from two different cities in a naturalistic setting. Five features were extracted from the raw data. Fifteen experts were involved in the data labeling to derive the ground truth of the dataset. The dataset fed five different models (Support Vector Machines (SVM), Artificial Neural Networks (ANN), fuzzy logic, k-Nearest Neighbor (kNN), and Random Forests (RF)). These models were evaluated in terms of a set of performance metrics and statistical tests. The experimental results from performance metrics showed that SVM outperformed the other four models, achieving an average accuracy of 0.96, F1-Score of 0.9595, Area Under the Curve (AUC) of 0.9730, and Kappa of 0.9375. In addition, Wilcoxon tests indicated that ANN predicts differently to the other four models. These promising results demonstrate that the proposed methodology may support researchers in making informed decisions about which ML model performs better for driving-styles classification.


2019 ◽  
Vol 9 (2) ◽  
pp. 104 ◽  
Author(s):  
Chen-Hsiang Yu ◽  
Jungpin Wu ◽  
An-Chi Liu

Massive Open Online Courses (MOOCs) have gradually become a dominant trend in education. Since 2014, the Ministry of Education in Taiwan has been promoting MOOC programs, with successful results. The ability of students to work at their own pace, however, is associated with low MOOC completion rates and has recently become a focus. The development of a mechanism to effectively improve course completion rates continues to be of great interest to both teachers and researchers. This study established a series of learning behaviors using the video clickstream records of students, through a MOOC platform, to identify seven types of cognitive participation models of learners. We subsequently built practical machine learning models by using K-nearest neighbor (KNN), support vector machines (SVM), and artificial neural network (ANN) algorithms to predict students’ learning outcomes via their learning behaviors. The ANN machine learning method had the highest prediction accuracy. Based on the prediction results, we saw a correlation between video viewing behavior and learning outcomes. This could allow teachers to help students needing extra support successfully pass the course. To further improve our method, we classified the course videos based on their content. There were three video categories: theoretical, experimental, and analytic. Different prediction models were built for each of these three video types and their combinations. We performed the accuracy verification; our experimental results showed that we could use only theoretical and experimental video data, instead of all three types of data, to generate prediction models without significant differences in prediction accuracy. In addition to data reduction in model generation, this could help teachers evaluate the effectiveness of course videos.


2020 ◽  
Vol 11 (2) ◽  
pp. 20-40
Author(s):  
Somya Goyal ◽  
Pradeep Kumar Bhatia

Software quality prediction is one the most challenging tasks in the development and maintenance of software. Machine learning (ML) is widely being incorporated for the prediction of the quality of a final product in the early development stages of the software development life cycle (SDLC). An ML prediction model uses software metrics and faulty data from previous projects to detect high-risk modules for future projects, so that the testing efforts can be targeted to those specific ‘risky' modules. Hence, ML-based predictors contribute to the detection of development anomalies early and inexpensively and ensure the timely delivery of a successful, failure-free and supreme quality software product within budget. This article has a comparison of 30 software quality prediction models (5 technique * 6 dataset) built on five ML techniques: artificial neural network (ANN); support vector machine (SVMs); Decision Tree (DTs); k-Nearest Neighbor (KNN); and Naïve Bayes Classifiers (NBC), using six datasets: CM1, KC1, KC2, PC1, JM1, and a combined one. These models exploit the predictive power of static code metrics, McCabe complexity metrics, for quality prediction. All thirty predictors are compared using a receiver operator curve (ROC), area under the curve (AUC), and accuracy as performance evaluation criteria. The results show that the ANN technique for software quality prediction is promising for accurate quality prediction irrespective of the dataset used.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ji-Eun Park ◽  
Sujeong Mun ◽  
Siwoo Lee

Background. Machine learning may be a useful tool for predicting metabolic syndrome (MetS), and previous studies also suggest that the risk of MetS differs according to Sasang constitution type. The present study investigated the development of MetS prediction models utilizing machine learning methods and whether the incorporation of Sasang constitution type could improve the performance of those prediction models. Methods. Participants visiting a medical center for a health check-up were recruited in 2005 and 2006. Six kinds of machine learning were utilized (K-nearest neighbor, naive Bayes, random forest, decision tree, multilayer perceptron, and support vector machine), as was conventional logistic regression. Machine learning-derived MetS prediction models with and without the incorporation of Sasang constitution type were compared to investigate whether the former would predict MetS with higher sensitivity. Age, sex, education level, marital status, body mass index, stress, physical activity, alcohol consumption, and smoking were included as potentially predictive factors. Results. A total of 750/2,871 participants had MetS. Among the six types of machine learning methods investigated, multiplayer perceptron and support vector machine exhibited the same performance as the conventional regression method, based on the areas under the receiver operating characteristic curves. The naive-Bayes method exhibited the highest sensitivity (0.49), which was higher than that of the conventional regression method (0.39). The incorporation of Sasang constitution type improved the sensitivity of all of the machine learning methods investigated except for the K-nearest neighbor method. Conclusion. Machine learning-derived models may be useful for MetS prediction, and the incorporation of Sasang constitution type may increase the sensitivity of such models.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


Sign in / Sign up

Export Citation Format

Share Document