scholarly journals Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells

2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.

2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.


2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.


2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumor by Flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumor microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment. keywords: PD-1, Treg, osteosarcoma, anti-PD-1 antibody.


2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumor by Flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumor microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment. keywords: PD-1, Treg, osteosarcoma, anti-PD-1 antibody.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jeong A. Park ◽  
Nai-Kong V. Cheung

Abstract Background The cure rate for metastatic osteosarcoma has not substantially improved over the past decades. Clinical trials of anti-HER2 trastuzumab or anti-GD2 dinutuximab for metastatic or refractory osteosarcoma were not successful, and neither was immune checkpoint inhibitors (ICIs). Methods We tested various target antigen expressions on osteosarcoma cell lines using flow cytometry and analyzed in vitro T cell engaging BsAb (T-BsAb)-dependent T cell-mediated cytotoxicity using 4-h 51Cr release assay. We tested in vivo anti-tumor activities of T-BsAb targeting GD2 or HER2 in established osteosarcoma cell line or patient-derived xenograft (PDX) mouse models carried out in BALB-Rag2−/−IL-2R-γc-KO (BRG) mice. We also generated ex vivo BsAb-armed T cells (EATs) and studied their tumor-suppressive effect against osteosarcoma xenografts. In order to improve the anti-tumor response, ICIs, anti-human PD-1 (pembrolizumab) or anti-human PD-L1 (atezolizumab) antibodies were tested their synergy with GD2- or HER2-BsAb against osteosarcoma. Results GD2 and HER2 were chosen from a panel of surface markers on osteosarcoma cell lines and PDXs. Anti-GD2 BsAb or anti-HER2 BsAb exerted potent anti-tumor effect against osteosarcoma tumors in vitro and in vivo. T cells armed with anti-GD2-BsAb (GD2-EATs) or anti-HER2-BsAb (HER2-EATs) showed significant anti-tumor activities as well. Anti-PD-L1 combination treatment enhanced BsAb-armed T cell function in vivo and improved tumor control and survival of the mice, when given sequentially and continuously. Conclusion Anti-GD2 and anti-HER2 BsAbs were effective in controlling osteosarcoma. These data support the clinical investigation of GD2 and HER2 targeted T-BsAb treatment in combination with immune checkpoint inhibitors, particularly anti-PD-L1, in patients with osteosarcoma to improve their treatment outcome.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A401-A401
Author(s):  
Shubham Pant ◽  
Amishi Shah ◽  
Pavlos Msaouel ◽  
Matthew Campbell ◽  
Shi-Ming Tu ◽  
...  

BackgroundMRx0518 is a novel, human gut microbiome-derived, single-strain, oral live biotherapeutic. It is a bacterium of the Enterococcus genus that was selected for development in the treatment of solid tumours for its strong in vitro and in vivo immunostimulatory activity. In vivo studies have shown that MRx0518 can inhibit tumour growth in different syngeneic cancer models as monotherapy and in combination with checkpoint inhibitors. MRx0518 has been shown to reduce Treg and increase Th1 and Tc1 lymphocyte differentiation in vitro, and increase intratumoral CD4+ and CD8+ T cells and NK cells in vivo.This phase I/II clinical study is evaluating the combination of MRx0518 and pembrolizumab in a cohort of heavily pre-treated patients refractory to immune checkpoint inhibitors (ICIs) to assess whether it is safe and can provide a clinical benefit.MethodsThe study is being conducted in two parts. Part A is complete and evaluated safety of the combination therapy in a cohort of 12 mRCC and mNSCLC patients. This data was assessed by the Safety Review Committee and it was determined appropriate to proceed to Part B. Part B is now recruiting up to 30 additional patients per indication (RCC, NSCLC or bladder cancer) at several US sites. Patients in both parts must be refractory to checkpoint inhibition. This is defined as having had an initial benefit from PD-1 pathway targeting immune checkpoint inhibition (ICI) but developing disease progression confirmed by two radiological scans ≥4 weeks apart in the absence of rapid clinical progression and within 12 weeks of last dose of ICI. Patients are treated with 1 capsule of MRx0518 (1 × 1010 to 1 × 1011 CFU) twice daily and pembrolizumab (200 mg every 3 weeks) for up to 35 cycles or until disease progression. Tumour response is assessed every 9 weeks per RECIST. Blood, stool and urine samples are collected throughout the study to evaluate immune markers and microbiome. Patients may choose to consent to tissue biopsies. The primary objective of the study is to evaluate safety of the combination by monitoring toxicities in the first cycle of treatment. Secondary objectives are to evaluate efficacy via ORR, DOR, DCR (CR, PR or SD ≥6 months) and PFS. Exploratory objectives are to evaluate biomarkers of treatment effect, impact on microbiota and OS and correlation of clinical outcome with PD-L1 CPS/TPS.ResultsN/AConclusionsN/ATrial RegistrationNCT03637803Ethics ApprovalThis study was approved by University of Texas MD Anderson’s Institutional Review Board; approval ref. 2018-0290


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Julian L. Goggi ◽  
Boominathan Ramasamy ◽  
Yun Xuan Tan ◽  
Siddesh V. Hartimath ◽  
Jun Rong Tang ◽  
...  

Hepatocellular carcinoma (HCC) is a notoriously difficult cancer to treat. The recent development of immune checkpoint inhibitors has revolutionised HCC therapy; however, successful response is only observed in a small percentage of patients. Biomarkers typically used to predict treatment response in other tumour types are ineffective in HCC, which arises in an immune-suppressive environment. However, imaging markers that measure changes in tumour infiltrating immune cells may supply information that can be used to determine which patients are responding to therapy posttreatment. We have evaluated [18F]AlF-mNOTA-GZP, a radiolabeled peptide targeting granzyme B, to stratify response to ICIs in a HEPA 1-tumours, a syngeneic model of HCC. Posttherapy, in vivo tumour retention of [18F]AlF-mNOTA-GZP was correlated to changes in tumour volume and tumour-infiltrating immune cells. [18F]AlF-mNOTA-GZP successfully stratified response to immune checkpoint inhibition in the syngeneic HEPA 1-6 model. FACS indicated significant changes in the immune environment including a decrease in immune suppressive CD4+ T regulatory cells and increases in tumour-associated GZB+ NK+ cells, which correlated well with tumour radiopharmaceutical uptake. While the immune response to ICI therapies differs in HCC compared to many other cancers, [18F]AlF-mNOTA-GZP retention is able to stratify response to ICI therapy associated with tumour infiltrating GZB+ NK+ cells in this complex tumour microenvironment.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3676
Author(s):  
Mengshi Li ◽  
Dijie Liu ◽  
Dongyoul Lee ◽  
Yinwen Cheng ◽  
Nicholas J. Baumhover ◽  
...  

Radiotherapy can facilitate the immune recognition of immunologically “cold” tumors and enhance the efficacy of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors (ICIs) in melanoma. Systemic administration of receptor-targeted radionuclide therapy has the potential to selectively deliver radionuclides to multiple tumors throughout the body in metastatic settings. By triggering immunologic cell death and increasing the immune susceptibility of surviving tumor cells in these locations, targeted radionuclide therapies may overcome resistance to ICIs and render immunologically “cold” tumors throughout the body responsive to ICIs and immunologically “hot”. Here, we show the anti-tumor cooperation of targeted α-particle radionuclide therapy (α-TRT) and ICIs in preclinical models of melanoma. Melanocortin 1 receptor (MC1R)-targeted radiopeptide [212Pb]VMT01 was employed to deliver α-radiation to melanoma tumors in mice. A single injection of 4.1 MBq [212Pb]VMT01 significantly slowed the tumor growth of B16-F10 melanoma and the combination of [212Pb]VMT01 and ICIs induced a cooperative anti-tumor effect leading to 43% complete tumor response with no sign of malignancy on autopsy. Animals with complete response developed anti-tumor immunity to reject further tumor inoculations. This therapeutic cooperation was completely abolished in RAG1 KO mice, which are deficient in T-cell maturation. In addition, the anti-tumor cooperation was compromised when fractionated [212Pb]VMT01 was used in the combination. We also demonstrated that [212Pb]VMT01 induced immunogenic cell death in tumor vaccination assays and in vitro exposure to [212Pb]VMT01 sensitized immunotolerant melanoma to ICIs treatment in vivo. Enhanced tumor infiltrating CD3+, CD4+, CD8+ lymphocytes were observed following injection of 1.4 MBq [212Pb]VMT01. Overall, we demonstrated anti-tumor cooperation between α-TRT and ICIs in melanoma that is mediated by tumor specific immunity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3704-3704 ◽  
Author(s):  
Rebecca Mathew ◽  
Dipica Haribhai ◽  
Fred Kohlhapp ◽  
Ryan Duggan ◽  
Paul Ellis ◽  
...  

Abstract Introduction and objectives: During an adaptive immune response antigen-specific T cells rapidly proliferate and differentiate into cytotoxic T lymphocytes. Most of these cells undergo apoptosis but some develop into high-affinity memory CD8+ T cells. The BCL-2 family of proteins regulates apoptosis and has a critical role in development and maintenance of the immune system. Venetoclax (Venclexta™, ABT-199) is a selective BCL-2 inhibitor that increases tumor cell apoptosis, and is approved by the FDA for patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), with or without 17p deletion, who have received at least one prior therapy. Given the critical role of BCL-2 in the regulation of the immune system, we hypothesized that venetoclax may affect the anti-tumor activity of immune checkpoint inhibitors. Results: To interrogate the effects of venetoclax on T cells we initially performed a series of in vitro studies using human lymphocytes treated with clinically relevant doses of the drug. As previously reported (Khaw et al., Leukemia; 28(6):1207-1215, 2014), human peripheral blood mononuclear cells (PBMCs) treated with venetoclax exhibited a dose-dependent decrease in the number of B-cells and T-cells (CD4+ and CD8+ T-cells). Upon further characterization of the surviving T cells, we found that while the proportion of naïve T-cells decreased with increasing venetoclax concentrations, the proportion of memory T-cells increased, specifically CD8+ and CD4+ T effector memory cells (Figure 1). We next examined the effects of venetoclax on T-cell function in vitro in response to immune stimulation with or without immune checkpoint blockade. To address this we performed a mixed lymphocyte reaction (MLR) assay, in which primary monocyte-derived dendritic cells from one donor were cultured with CD4+ T-cells from another donor. In the MLR reaction we observed that venetoclax reduced CD4+ T-cell viability in a dose-dependent manner, but it did not limit T-cell proliferation of surviving cells. Venetoclax did not affect IFNγ secretion within these surviving cells and, more importantly, did not reduce the effects of the checkpoint inhibitor nivolumab (Figure 2). To test the effects of venetoclax on antigen-specific T cells, we performed a cytomegalovirus (CMV) recall assay where PBMCs from CMV-positive human subjects were incubated with CMV antigen and the activity of T cells was measured by IFNg secretion. Although venetoclax treatment reduced the total number of cells, IFNg production from antigen-specific CMV+ T cells remained comparable to DMSO control and combining venetoclax with nivolumab did not affect the anti-PD-1 response (Figure 3). Finally, to investigate the effects of venetoclax in combination with anti-PD-1 therapy in vivo we used the murine syngeneic tumor model MC38. Venetoclax did not impair the efficacy of anti-PD-1, and in some studies increased efficacy relative to either anti-PD-1 or venetoclax monotherapy alone. To determine whether the efficacy of the venetoclax-anti-PD-1 combination is immune-mediated, we transplanted immunodeficient mice with MC38 cells and repeated the same treatment regimens. The lack of efficacy in any of the treatment arms indicates that the contribution of venetoclax to efficacy in this solid tumor model is immune-mediated (Figure 4). Conclusions: These data suggest that venetoclax treatment results in loss of naïve but not memory T cells. Venetoclax did not affect the viability, the induction or frequency of memory T cells. In human in vitro experiments and in an in vivo syngeneic tumor model venetoclax did not antagonize the therapeutic effect of anti-PD-1. Contrary to our initial hypothesis, we find that modulation of the immune system by venetoclax may support its potential use for immune-based cancer therapy, as memory T-cells can rapidly acquire effector and cytotoxic function to eliminate cancer cells. Taken together, we provide evidence that venetoclax in combination with immune checkpoint inhibitors should be further explored as a therapy for cancer patients. All authors are employees of AbbVie. The design, study conduct, and financial support for this research were provided by AbbVie. AbbVie and Genentech participated in the interpretation of data, review, and approval of the publication. Disclosures Mathew: AbbVie Inc.: Employment. Haribhai:AbbVie Inc.: Employment. Kohlhapp:AbbVie Inc.: Employment. Duggan:AbbVie Inc.: Employment. Ellis:AbbVie Inc.: Employment. Riehm:AbbVie Inc.: Employment. Robinson:AbbVie Inc.: Employment. Shi:AbbVie Inc.: Employment. Bhathena:AbbVie Inc.: Employment. Leverson:AbbVie Inc: Employment, Equity Ownership, Patents & Royalties. Pappano:AbbVie Inc.: Employment. Donawho:AbbVie Inc.: Employment. Uziel:AbbVie Inc.: Employment.


Sign in / Sign up

Export Citation Format

Share Document