scholarly journals The BCL-2-Selective Inhibitor Venetoclax Spares Activated T-Cells during Anti-Tumor Immunity

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3704-3704 ◽  
Author(s):  
Rebecca Mathew ◽  
Dipica Haribhai ◽  
Fred Kohlhapp ◽  
Ryan Duggan ◽  
Paul Ellis ◽  
...  

Abstract Introduction and objectives: During an adaptive immune response antigen-specific T cells rapidly proliferate and differentiate into cytotoxic T lymphocytes. Most of these cells undergo apoptosis but some develop into high-affinity memory CD8+ T cells. The BCL-2 family of proteins regulates apoptosis and has a critical role in development and maintenance of the immune system. Venetoclax (Venclexta™, ABT-199) is a selective BCL-2 inhibitor that increases tumor cell apoptosis, and is approved by the FDA for patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), with or without 17p deletion, who have received at least one prior therapy. Given the critical role of BCL-2 in the regulation of the immune system, we hypothesized that venetoclax may affect the anti-tumor activity of immune checkpoint inhibitors. Results: To interrogate the effects of venetoclax on T cells we initially performed a series of in vitro studies using human lymphocytes treated with clinically relevant doses of the drug. As previously reported (Khaw et al., Leukemia; 28(6):1207-1215, 2014), human peripheral blood mononuclear cells (PBMCs) treated with venetoclax exhibited a dose-dependent decrease in the number of B-cells and T-cells (CD4+ and CD8+ T-cells). Upon further characterization of the surviving T cells, we found that while the proportion of naïve T-cells decreased with increasing venetoclax concentrations, the proportion of memory T-cells increased, specifically CD8+ and CD4+ T effector memory cells (Figure 1). We next examined the effects of venetoclax on T-cell function in vitro in response to immune stimulation with or without immune checkpoint blockade. To address this we performed a mixed lymphocyte reaction (MLR) assay, in which primary monocyte-derived dendritic cells from one donor were cultured with CD4+ T-cells from another donor. In the MLR reaction we observed that venetoclax reduced CD4+ T-cell viability in a dose-dependent manner, but it did not limit T-cell proliferation of surviving cells. Venetoclax did not affect IFNγ secretion within these surviving cells and, more importantly, did not reduce the effects of the checkpoint inhibitor nivolumab (Figure 2). To test the effects of venetoclax on antigen-specific T cells, we performed a cytomegalovirus (CMV) recall assay where PBMCs from CMV-positive human subjects were incubated with CMV antigen and the activity of T cells was measured by IFNg secretion. Although venetoclax treatment reduced the total number of cells, IFNg production from antigen-specific CMV+ T cells remained comparable to DMSO control and combining venetoclax with nivolumab did not affect the anti-PD-1 response (Figure 3). Finally, to investigate the effects of venetoclax in combination with anti-PD-1 therapy in vivo we used the murine syngeneic tumor model MC38. Venetoclax did not impair the efficacy of anti-PD-1, and in some studies increased efficacy relative to either anti-PD-1 or venetoclax monotherapy alone. To determine whether the efficacy of the venetoclax-anti-PD-1 combination is immune-mediated, we transplanted immunodeficient mice with MC38 cells and repeated the same treatment regimens. The lack of efficacy in any of the treatment arms indicates that the contribution of venetoclax to efficacy in this solid tumor model is immune-mediated (Figure 4). Conclusions: These data suggest that venetoclax treatment results in loss of naïve but not memory T cells. Venetoclax did not affect the viability, the induction or frequency of memory T cells. In human in vitro experiments and in an in vivo syngeneic tumor model venetoclax did not antagonize the therapeutic effect of anti-PD-1. Contrary to our initial hypothesis, we find that modulation of the immune system by venetoclax may support its potential use for immune-based cancer therapy, as memory T-cells can rapidly acquire effector and cytotoxic function to eliminate cancer cells. Taken together, we provide evidence that venetoclax in combination with immune checkpoint inhibitors should be further explored as a therapy for cancer patients. All authors are employees of AbbVie. The design, study conduct, and financial support for this research were provided by AbbVie. AbbVie and Genentech participated in the interpretation of data, review, and approval of the publication. Disclosures Mathew: AbbVie Inc.: Employment. Haribhai:AbbVie Inc.: Employment. Kohlhapp:AbbVie Inc.: Employment. Duggan:AbbVie Inc.: Employment. Ellis:AbbVie Inc.: Employment. Riehm:AbbVie Inc.: Employment. Robinson:AbbVie Inc.: Employment. Shi:AbbVie Inc.: Employment. Bhathena:AbbVie Inc.: Employment. Leverson:AbbVie Inc: Employment, Equity Ownership, Patents & Royalties. Pappano:AbbVie Inc.: Employment. Donawho:AbbVie Inc.: Employment. Uziel:AbbVie Inc.: Employment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuqing Zhang ◽  
Mengyao Luo ◽  
Shamael R. Dastagir ◽  
Mellissa Nixon ◽  
Annie Khamhoung ◽  
...  

AbstractCheckpoint inhibitors and T-cell therapies have highlighted the critical role of T cells in anti-cancer immunity. However, limitations associated with these treatments drive the need for alternative approaches. Here, we engineer red blood cells into artificial antigen-presenting cells (aAPCs) presenting a peptide bound to the major histocompatibility complex I, the costimulatory ligand 4-1BBL, and interleukin (IL)-12. This leads to robust, antigen-specific T-cell expansion, memory formation, additional immune activation, tumor control, and antigen spreading in tumor models in vivo. The presence of 4-1BBL and IL-12 induces minimal toxicities due to restriction to the vasculature and spleen. The allogeneic aAPC, RTX-321, comprised of human leukocyte antigen-A*02:01 presenting the human papilloma virus (HPV) peptide HPV16 E711-19, 4-1BBL, and IL-12 on the surface, activates HPV-specific T cells and promotes effector function in vitro. Thus, RTX-321 is a potential ‘off-the-shelf’ in vivo cellular immunotherapy for treating HPV + cancers, including cervical and head/neck cancers.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jeong A. Park ◽  
Nai-Kong V. Cheung

Abstract Background The cure rate for metastatic osteosarcoma has not substantially improved over the past decades. Clinical trials of anti-HER2 trastuzumab or anti-GD2 dinutuximab for metastatic or refractory osteosarcoma were not successful, and neither was immune checkpoint inhibitors (ICIs). Methods We tested various target antigen expressions on osteosarcoma cell lines using flow cytometry and analyzed in vitro T cell engaging BsAb (T-BsAb)-dependent T cell-mediated cytotoxicity using 4-h 51Cr release assay. We tested in vivo anti-tumor activities of T-BsAb targeting GD2 or HER2 in established osteosarcoma cell line or patient-derived xenograft (PDX) mouse models carried out in BALB-Rag2−/−IL-2R-γc-KO (BRG) mice. We also generated ex vivo BsAb-armed T cells (EATs) and studied their tumor-suppressive effect against osteosarcoma xenografts. In order to improve the anti-tumor response, ICIs, anti-human PD-1 (pembrolizumab) or anti-human PD-L1 (atezolizumab) antibodies were tested their synergy with GD2- or HER2-BsAb against osteosarcoma. Results GD2 and HER2 were chosen from a panel of surface markers on osteosarcoma cell lines and PDXs. Anti-GD2 BsAb or anti-HER2 BsAb exerted potent anti-tumor effect against osteosarcoma tumors in vitro and in vivo. T cells armed with anti-GD2-BsAb (GD2-EATs) or anti-HER2-BsAb (HER2-EATs) showed significant anti-tumor activities as well. Anti-PD-L1 combination treatment enhanced BsAb-armed T cell function in vivo and improved tumor control and survival of the mice, when given sequentially and continuously. Conclusion Anti-GD2 and anti-HER2 BsAbs were effective in controlling osteosarcoma. These data support the clinical investigation of GD2 and HER2 targeted T-BsAb treatment in combination with immune checkpoint inhibitors, particularly anti-PD-L1, in patients with osteosarcoma to improve their treatment outcome.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A831-A831
Author(s):  
Tienan Wang ◽  
Qing Lin ◽  
Jie Zhang

BackgroundCancer immunotherapies, including immune checkpoint inhibitors, CAR-T, cancer vaccines and bispecific antibodies, have been brought to spot light in recent years as several therapeutic strategies targeting the immune system have produced exciting clinical results. Bispecific antibody typically play dual roles in blocking the immune checkpoint and redirecting/re-boosting the function of the immune effector cells. Blinatumomab belongs to CD3 bispecific T cell engager (CD3 BiTE), which was engineered to harbor two arms binding with CD3 and CD19 simultaneously and direct CD8+ T cells to specifically recognize CD19 positive lymphoma cells to execute cytotoxicity. Approval of Blinatumomab for patients with relapse/refractory B cell acute lymphoblastic leukemia (ALL) has driven remarkable increase in combination studies of Blinatumomab with other immunotherapies such as checkpoint inhibitors.MethodsIn this study, we developed CD8+ T cytotoxic system targeting different B lymphoma cell line and fully validated the function of Blinatumomab in promoting target tumor cell lysis by primary CD8+ T cells (figure 1). In addition, we established a mixed lymphocyte and tumor system to mimic physiological TME to dissect the combinational role of Nivolumab and Blinatumomab (figure 2).ResultsThe result suggest that combinatory therapy is highly depend on the dosage of Blinatumomab and also T cell number in the TME, which might give an instruction for ongoing clinical trial design. Finally, we have employed humanized mouse models bearing Raji or Daudi tumor cells to further validate this combination treatment in vivo. Both In-vivo and In-vitro data support that Blinatumomab is dominant in activing T cell and Nivolumab can only exhibit synergistic effect under suboptimal dosage of Blinatumomab.Abstract 781 Figure 1Establishment of In vitro co-culture system for CD3 BiTEestablish in vitro human PBMC based system to validate CD3 BiTE functionAbstract 781 Figure 2Opdivo and CD3 BiTE CombinationOpdivo could further promote T cell activation under the treatment of CD3 BiTEConclusionsSuccessfully establish in vitro system to evaluate the function of CD3 BiTE and also take advantage of MLR/tumor co-culture system to demonstrate PD1 antibody could further promote T cell activation under appropriate dosage of CD3 BiTE.


1996 ◽  
Vol 183 (5) ◽  
pp. 2361-2366 ◽  
Author(s):  
J C Becker ◽  
J D Pancook ◽  
S D Gillies ◽  
K Furukawa ◽  
R A Reisfeld

Induction of a T-cell mediated antitumor response is the ultimate goal for tumor immunotherapy. We demonstrate here that antibody-targeted IL2 therapy is effective against established pulmonary and hepatic melanoma metastases in a syngeneic murine tumor model. The effector mechanisms involved in this tumor eradication are not dependent on NK cells, since the therapeutic effect of antibody-IL2 fusion protein was not altered in NK cell-deficient mice. In contrast, T cells are essential for the observed antitumor effect, since therapy with antibody IL2 fusion proteins is unable to induce tumor eradication in T cell-deficient SCID mice. In vivo depletion studies characterized the essential effector cell population further as CD8 + T cells. Such CD8 + T cells, isolated from tumor bearing mice after antibody-directed IL2 therapy, exerted a MHC class I-restricted cytotoxicity against the same tumor in vitro. These data demonstrate the ability of antibody-targeted IL2 delivery to induce a T cell-dependent host immune response that is capable of eradicating established melanoma metastases in clinically relevant organs.


Author(s):  
Takayoshi Yamauchi ◽  
Toshifumi Hoki ◽  
Takaaki Oba ◽  
Kristopher Attwood ◽  
Xuefang Cao ◽  
...  

AbstractThe use of tumor mutation-derived neoantigen represents a promising approach for cancer vaccines. Preclinical and early-phase human clinical studies have shown the successful induction of tumor neoepitope-directed responses; however, overall clinical efficacy of neoantigen vaccines has been limited. One major obstacle of this strategy is the prevailing lack of sufficient understanding of the mechanism underlying the generation of neoantigen-specific CD8+ T cells. Here, we report a correlation between antitumor efficacy of neoantigen/toll-like receptor 3 (TLR3)/CD40 vaccination and the generation of antigen-specific CD8+ T cells expressing CX3C chemokine receptor 1 (CX3CR1) in a preclinical model. Mechanistic studies using mixed bone marrow chimeras identified that CD40 and CD80/86, but not CD70 signaling in Batf3-dependent conventional type 1 dendritic cells (cDC1s) is required for antitumor efficacy of neoantigen vaccine and generation of neoantigen-specific CX3CR1+ CD8+ T cells. Although CX3CR1+ CD8+ T cells exhibited robust in vitro effector function, depletion of this subset did not alter the antitumor efficacy of neoantigen/TLR3/CD40 agonists vaccination, suggesting that the expanded CX3CR1+ CD8+ T cell subset represents the post-differentiated in vivo effective CX3CR1-negative CD8+ T cell subset. Taken together, our results reveal a critical role of CD40 and CD80/86 signaling in cDC1s in antitumor efficacy of neoantigen-based therapeutic vaccines, and implicate the potential utility of CX3CR1 as a circulating predictive T-cell biomarker in vaccine therapy.


2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumour by flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumour microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment.


2019 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

Abstract Background: There are many types of therapies for cancer. In these days, immunotherapies, especially immune checkpoint inhibitors, are focused on. Though many types of immune checkpoint inhibitors are there, the difference of effect and its mechanism are unclear. Some reports suggest the response rate of anti-PD-1 antibody is superior to that of anti-PD-L1 antibody and could potentially produce different mechanisms of action. On the other hand, Treg also express PD-1; however, their relationship remains unclear. Methods: In this study, we used osteosarcoma cell lines in vitro and osteosarcoma mouse model in vivo. In vitro, we analyzed the effect of IFNγ for expression of PD-L1 on the surface of cell lines by flowcytometry. In vivo, murine osteosarcoma cell line LM8 was subcutaneously transplanted into the dorsum of mice. Mouse anti-PD-1 antibody was intraperitoneally administered. we analysed the effect for survival of anti-PD-1 antibody and proportion of T cells in the tumor by Flowcytometry. Results: We discovered that IFNγ increased PD-L1 expression on the surface of osteosarcoma cell lines. In assessing the relationship between anti-PD-1 antibody and Treg, we discovered the administration of anti-PD-1 antibody suppresses increases in tumour volume and prolongs overall survival time. In the tumor microenvironment, we found that the administration of anti-PD-1 antibody decreased Treg within the tumour and increased tumour-infiltrating lymphocytes. Conclusions: Here we clarify for the first time an additional mechanism of anti-tumour effect—as exerted by anti-PD-1 antibody decreasing Treg— we anticipate that our findings will lead to the development of new methods for cancer treatment. keywords: PD-1, Treg, osteosarcoma, anti-PD-1 antibody.


Author(s):  
Monireh Mohsenzadegan ◽  
Parizad Bavandpour ◽  
Mohammad Reza Nowroozi ◽  
Erfan Amini ◽  
Masoumeh Kourosh-Arami ◽  
...  

: Targeting inhibitory receptors on T cells in the tumor sites can promote effective anti-tumor immunity in bladder cancer. Unfortunately, the main dilemma is that a large number of patients remain refractory to CTLA-4, PD-1, and PD-L1 blockade therapies. T-cell immunoglobulin and mucin domain 3 (Tim-3) is an inhibitory receptor expressed on T cells and innate immune cells. Both in vivo and in vitro data from patients with advanced cancers support the role of Tim-3 inhibition in satisfactory anti-tumor immunity. In bladder cancer, the expression level of Tim-3 significantly increases with advanced pathological grade and T stage. Therefore, rationality implies that designing novel monoclonal antibodies reactive with Tim-3 alone or in combination with other checkpoint inhibitors may indicate a favorable response in bladder cancer. Here, we aimed to investigate the possibility of targeting Tim-3 as a novel anti-cancer treatment for bladder cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2766-2766
Author(s):  
Seema Rawal ◽  
Nathan Fowler ◽  
Min Zhang ◽  
Zhiqiang Wang ◽  
Tariq Muzzafar ◽  
...  

Abstract Abstract 2766 Background: Lenalidomide plus rituximab therapy is a highly effective and well-tolerated therapy in patients (pts) with follicular lymphoma (FL). In a Phase II trial, this combination induced a complete remission rate of 87% in pts with advanced stage untreated FL (Fowler et al, Ann Oncol, 2011; 22; suppl 4:137). A randomized Phase III trial was recently initiated to compare this combination with current standard of care therapies in pts with FL. Although lenalidomide is known to be an immunomodulatory drug with effects on a variety of immune cells in vitro, its effects have not been well studied in vivo in humans. Understanding the in vivo effects of lenalidomide could lead to novel combination strategies to enhance the efficacy and improve clinical outcome in FL and other malignancies. Methods: Pts received lenalidomide 20 mg/day on days 1–21 of each 28-day cycle and rituximab was given at 375 mg/m2on day 1 of each cycle. Peripheral blood mononuclear cells (PBMC) were phenotyped by multiparametric flow cytometry at baseline, on cycle 2 day 15 (C2D15), and at the end of cycle 6. In addition, peripheral blood (PB) samples were collected in PAXgene Blood RNA tubes at baseline and on C2D15 for whole genome gene expression profiling (GEP). Results: Immunophenotyping of baseline and end of cycle 6 PBMC (n=17) showed that the percentages and absolute numbers of CD3+, CD4+, CD8+, TCRgd, and Foxp3+ regulatory T cells; and NK, NKT, and myeloid dendritic cells were not significantly different between the two time points. However, a significant increase in CD4+CD45RO+ (p<0.01) and CD8+CD45RO+ (p=0.04) memory T cells was observed post-therapy. Further characterization of CD4+ T cells showed a significant increase in central memory T cells (p<0.001) and a decrease in naïve (p<0.01) and terminally differentiated (p<0.01) T cells, but no change in effector memory T cells. The increase in CD8+ central memory T cells was marginally significant (p=0.06). Plasmacytoid dendritic cells (PDC) were also significantly increased (p=0.02). In contrast, no such changes in T cell subsets or PDC were observed in FL pts (n=9) treated with 6 cycles of R-CHOP chemotherapy that received equal number of rituximab doses and analyzed at similar time points (baseline and end of cycle 6). To understand lenalidomide-induced changes on a molecular level, we compared GEP data at C2D15 vs. baseline for 7 pairs of PB samples. The paired significance analysis of microarrays method, based on Student's t test, identified 1,748 differentially expressed genes (DEG; 713 up, 1035 down), without a fold-change threshold, in C2D15 samples vs. baseline. Results were influenced by rituximab-induced depletion of B cells in C2D15 samples, but there were many changes that suggested altered PBMC physiology. Noteworthy up-regulated genes (>1.5 fold) included genes associated with T and NK cell activation including BATF, CCR2, CD1B, CD2, CD160, CTLA4, CXCR3, ICOS, and LAG3; and CD163 and CD209, phagocytic receptors expressed on monocytes/macrophages. Down-regulated genes (>1.5 fold) included CXCR5, which mediates B cell migration into follicles; and IL1B and TNFSF13B (BAFF), which are produced by activated macrophages and induce B cell proliferation. Gene set enrichment analysis of all GEP results, and Ingenuity Pathway Analysis of DEGs, indicated up regulation of multiple pathways and processes including ribosomal and mitochondrial components involved in translation and oxidative phosphorylation, CTLA4 signaling in cytotoxic T cells, and differentiation and signaling by ICOS and CD28 in T helper cells. We confirmed up regulation of CTLA4, ICOS, and LAG3 at the protein level in C2D15 PBMC by flow cytometry. Furthermore, treatment of PBMC derived from untreated FL pts with lenalidomide in vitro resulted in up regulation of these molecules in T and/or NK cells consistent with our in vivo results. Conclusions: In FL pts, lenalidomide induced multiple changes in the immune system including increases in PDC and memory T cell subsets, activation of T and NK cells, and down-regulation of certain genes mediating B cell migration and proliferation. These results provide insights into the mechanism of action of lenalidomide and suggest that it can be combined with other immunostimulatory agents such as therapeutic vaccines, adoptive T cell therapy strategies, and immune checkpoint inhibitors to further enhance its efficacy in FL and other malignancies. Disclosures: Fowler: Celgene: Research Funding. Heise:Celgene Corporation: Employment, Equity Ownership. Lacerte:Celgene: Honoraria. Samaniego:Celgene: Research Funding. Neelapu:Celgene Corporation: Research Funding.


2019 ◽  
Vol 5 (7) ◽  
pp. eaav9732 ◽  
Author(s):  
Carina Seitz ◽  
Juan Huang ◽  
Anna-Lena Geiselhöringer ◽  
Pamela Galbani-Bianchi ◽  
Svenja Michalek ◽  
...  

LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation. T cell–specific deletion of LRH-1 causes a drastic loss of mature peripheral T cells. LRH-1–depleted CD4+ T cells exert strongly reduced activation-induced proliferation in vitro and in vivo and fail to mount immune responses against model antigens and to induce experimental intestinal inflammation. Similarly, LRH-1–deficient cytotoxic CD8+ T cells fail to control viral infections. This study describes a novel and critical role of LRH-1 in T cell maturation, functions, and immopathologies and proposes LRH-1 as an emerging pharmacological target in the treatment of T cell–mediated inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document