scholarly journals Extensive antimicrobial resistance and plasmid-carrying resistance genes in mcr-1-positive E. coli sampled in swine, in Guangxi, South China

2021 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background: The discovery of the superbug mcr-1-positive Escherichia coli (MCRPEC) has attracted worldwide attention. Swine-origin multi-drug resistant MCRPEC is a potential threat to public health and safety. To date, few detailed studies have been reported on swine MCRPEC in Guangxi, South China.Results: In this study, thirty-three MCRPEC strains were identified from 142 E. coli strains isolated from 116 samples in Guangxi in 2018. All MCRPEC isolates were classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1) were found. Then, susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen 3rd and 4th generation cephalosporins resistant E. coli and twelve carbapenem resistant E. coli among the 33 MCRPEC strains. Importantly, the MCRPEC were highly resistant to two carbapenem antibiotics, imipenem and meropenem, which were not permitted for use in livestock production. Three MCRPEC strains were further identified to be extensively drug-resistant (XDR), and the other isolates were recognized as multi-drug-resistant (MDR). Moreover, we detected whether the plasmid-carrying resistance genes coexist with the mcr-1 gene of the MCRPEC isolates. At last, β-lactamase antimicrobial resistance genes such as ESBL genes (blaCTX-M14, blaCTX-M24, blaCTX-M123, blaOXA-1), plasmid-mediated AmpC (pAmpC) gene (blaCMY-2), and the carbapenem gene blaNDM-5 were detected. In addition, non-β-lactamase antimicrobial resistance genes such as qnrA, qnrB, qnrS, aac(6’)-Ib-cr, tetA, tetB, sul1, sul2, floR, aadA were also detected.Conclusion: Thirty-three mcr-1-positive E. coli isolates in Guangxi had a wide range of antimicrobial resistance. Plasmid-carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlighted the necessity for long-term surveillance of mcr-1-positive E. coli in pigs.

2020 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background: The discovery of the superbug mcr-1 -positive Escherichia coli (MCRPEC) has attracted worldwide attention. Swine-origin multi-drug resistant MCRPEC is a potential threat to public health and safety. To date, few detailed studies have been reported on swine MCRPEC in Guangxi, South China. Results: In this study, thirty-three MCRPEC strains were identified from 142 E. coli strains isolated from 116 samples in Guangxi in 2018. All MCRPEC isolates were classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1) were found. Then, susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen 3rd and 4th generation cephalosporins resistant E. coli and twelve carbapenem resistant E. coli among the 33 MCRPEC strains. Importantly, the MCRPEC were highly resistant to two carbapenem antibiotics, imipenem and meropenem, which were not permitted for use in livestock production. Three MCRPEC strains were further identified to be extensively drug-resistant (XDR), and the other isolates were recognized as multi-drug-resistant (MDR). Moreover, we detected whether the plasmid-carrying resistance genes coexist with the mcr-1 gene of the MCRPEC isolates. At last, β-lactamase antimicrobial resistance genes such as ESBL genes ( bla CTX-M14 , bla CTX-M24 , bla CTX-M123 , bla OXA-1 ), plasmid-mediated AmpC (pAmpC) gene ( bla CMY-2 ), and the carbapenem gene bla NDM-5 were detected. In addition, non-β-lactamase antimicrobial resistance genes such as qnrA , qnrB , qnrS , aac(6’)-Ib-cr , tetA , tetB , sul1 , sul2 , floR , aadA were also detected. Conclusion: Thirty-three mcr-1 -positive E. coli isolates in Guangxi had a wide range of antimicrobial resistance. Plasmid-carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlighted the necessity for long-term surveillance of mcr-1 -positive E. coli in pigs.


2019 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background: The discovery of the superbug mcr-1 -positive Escherichia coli (MCRPEC) has attracted worldwide attention. Swine-origin multi-drug resistant MCRPEC is a potential threat to public health and safety. To date, few detailed studies have been reported on swine MCRPEC in Guangxi, South China. Results: In this study, thirty-three MCRPEC strains were identified from 142 E. coli strains isolated from swine in Guangxi in 2018. All MCRPEC isolates were classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1) were found. Then, susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen 3rd and 4th generation cephalosporins resistant E. coli and twelve carbapenem resistant E. coli among the 33 MCRPEC strains. Importantly, the MCRPEC were highly resistant to two carbapenem antibiotics, imipenem and meropenem, which were not permitted for use in livestock production. Three MCRPEC strains were further identified to be extensively drug-resistant (XDR), and the other isolates were recognized as multi-drug-resistant (MDR). Moreover, in order to detect whether the acquired antimicrobial resistance genes coexisted with the mcr-1 gene of the MCRPEC isolates, 22 acquired antimicrobial resistance genes were tested in total plasmid genes of MCRPEC isolates . At last, β-lactamase antimicrobial resistance genes such as ESBL genes ( bla CTX-M14 , bla CTX-M24 , bla CTX-M123 , bla OXA-1 ), plasmid-mediated AmpC (pAmpC) gene ( bla CMY-2 ), and the carbapenem gene bla NDM-5 were detected. In addition, non-β-lactamase antimicrobial resistance genes such as qnrA , qnrB , qnrS , aac(6’)-Ib-cr , tetA , tetB , sul1 , sul2 , floR , aadA were also detected. Conclusion: Thirty-three mcr-1 -positive E. coli isolates in Guangxi had a wide range of antimicrobial resistance. Plasmids carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlights the necessity for long-term surveillance of mcr-1 -positive E. coli in pigs.


2021 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background: The discovery of the superbug mcr-1-positive Escherichia coli (MCRPEC) has drew greet attention. Swine-origin multi-drug resistant MCRPEC has been a potential threat to public health and safety. However, there were few detailed studies have been reported on swine MCRPEC in Guangxi, South China.Results: In this study, thirty-three MCRPEC strains were detected from 142 E. coli strains from 116 samples in Guangxi in 2018. Which could be classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1). After that, the susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen E. coli resistant to 3rd and 4th generation cephalosporins and twelve E. coli resistant to carbapenem resistan. Importantly, the MCRPEC showed high resistance highly resistance for imipenem and meropenem, which were forbidden to use in livestock production. Three MCRPEC strains were further proved to be extensively drug-resistant (XDR), and the other isolates were multi-drug-resistant (MDR). Furthermore, we found that the plasmid-carrying resistance genes coexisted with the mcr-1 gene of the MCRPEC isolates. Which were listed as follows: β-lactamase antimicrobial resistance genes e.g. ESBL genes (blaCTX-M14, blaCTX-M24, blaCTX-M123, blaOXA-1), plasmid-mediated AmpC (pAmpC) gene (blaCMY-2), the carbapenem resistance gene (blaNDM-5), and non-β-lactamase antimicrobial resistance genes (qnrA, qnrB, qnrS, aac(6’)-Ib-cr, tetA, tetB, sul1, sul2, floR, aadA).Conclusion: Thirty-three mcr-1-positive E. coli isolates in Guangxi displayed a wide profile of antimicrobial resistance. Plasmid-carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlighted the necessity for long-term surveillance of mcr-1-positive E. coli in pigs.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background The discovery of the superbug mcr-1-positive Escherichia coli (MCRPEC) has drew greet attention. Swine-origin multi-drug resistant MCRPEC has been a potential threat to public health and safety. However, there were few detailed studies have been reported on swine MCRPEC in Guangxi, South China. Results In this study, thirty-three MCRPEC strains were detected from 142 E. coli strains from 116 samples in Guangxi in 2018. Which could be classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1). After that, the susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen E. coli resistant to 3rd and 4th generation cephalosporins and twelve E. coli resistant to carbapenem resistan. Importantly, the MCRPEC showed high resistance highly resistance for imipenem and meropenem, which were forbidden to use in livestock production. Three MCRPEC strains were further proved to be extensively drug-resistant (XDR), and the other isolates were multi-drug-resistant (MDR). Furthermore, we found that the plasmid-carrying resistance genes coexisted with the mcr-1 gene of the MCRPEC isolates. Which were listed as follows: β-lactamase antimicrobial resistance genes e.g. ESBL genes (blaCTX-M14, blaCTX-M24, blaCTX-M123, blaOXA-1), plasmid-mediated AmpC (pAmpC) gene (blaCMY-2), the carbapenem resistance gene (blaNDM-5), and non-β-lactamase antimicrobial resistance genes (qnrA, qnrB, qnrS, aac (6′)-Ib-cr, tetA, tetB, sul1, sul2, floR, aadA). Conclusion Thirty-three mcr-1-positive E. coli isolates in Guangxi displayed a wide profile of antimicrobial resistance. Plasmid-carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlighted the necessity for long-term surveillance of mcr-1-positive E. coli in pigs.


2019 ◽  
Author(s):  
Jingzhi Yuan ◽  
Xiaoye Wang ◽  
Dali Shi ◽  
Qiang Ge ◽  
Xingxing Song ◽  
...  

Abstract Background The discovery of mcr-1-positive Escherichia coli (MCRPEC), a notable superbug, attracted great attention worldwide. Swine-origin multi-drug resistance MCRPEC is a potential threat to public health and safety. To date, few detailed studies regarding swine-origin MCRPEC in Guangxi, South China, have been reported. Results In this study, thirty-three MCRPEC harbored mcr-1 genes were identified from 142 E. coli strains isolated from swine droppings and entrails in Guangxi in 2018. All MCRPEC isolates were assigned to 8 unique STs, including ST10, ST224 and ST410, which overlapped with the human-origin MCRPEC. Additionally, a total of six plasmid replicon types (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1) were found. Moreover, the drug susceptibility of the MCRPEC isolates was tested with 27 antimicrobial agents belonging to 17 antimicrobial categories that are usually used in hospitals. There were 19 extended spectrum beta lactamase (ESBL) E. coli and 12 carbapenem resistant E. coli among the 33 MCRPEC strains. Importantly, the MCRPEC showed a high rate of resistance against two broad-spectrum carbapenem antibiotics, imipenem and meropenem, which are forbidden in livestock production use. Three MCRPEC strains were further identified to be extensively drug-resistant (XDR), and other isolates were recognized as multi-drug-resistant (MDR). Meanwhile, to detect whether plasmid-carrying antimicrobial resistance genes coexisted with the mcr-1 gene in the MCRPEC isolates, a total of 22 plasmid-carrying antimicrobial resistance genes were tested for. The results showed that four ESBL genes and one pAmpC gene were identified. Eight of the MCRPEC isolates also contained the carbapenem gene blaNDM-5, which could cause untreatable infections. Moreover, ten non-lactamase genes were also detected. Conclusion This study indicated that swine-origin MCRPEC isolated in Guangxi seemed to have a high rate of resistance to both regular and final line of defense drugs as well as drug resistance genes, which pose a great threat to human public safety and health.


2020 ◽  
Author(s):  
B Constantinides ◽  
KK Chau ◽  
TP Quan ◽  
G Rodger ◽  
M Andersson ◽  
...  

ABSTRACTEscherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonised with diverse populations of E. coli, Klebsiella pneumoniae and Klebsiella oxytoca, including both antimicrobial-resistant and susceptible strains. Using whole genome sequencing (WGS) of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies which may vary as a result of different inputs and selection pressures. WGS of 46 contemporaneous patient isolates identified one (2%; 95% CI 0.05-11%) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10% of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including blaCTX-M, blaSHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention.IMPORTANCEEscherichia coli and Klebsiella spp. cause a wide range of bacterial infections, including bloodstream, urine and lung infections. Previous studies have shown that sink drains in hospitals may be part of transmission chains in outbreaks of antimicrobial-resistant E. coli and Klebsiella spp., leading to colonisation and clinical disease in patients. We show that even in non-outbreak settings, contamination of sink drains by these bacteria is common across hospital wards, and that many antimicrobial resistance genes can be found and potentially exchanged in these sink drain sites. Our findings demonstrate that the colonisation of handwashing sink drains by these bacteria in hospitals is likely contributing to some infections in patients, and that additional work is needed to further quantify this risk, and to consider appropriate mitigating interventions.


2019 ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACTThe increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts in human medicine. Many of the multi-drug resistant (MDR) Enterobacteriaceae found in humans are community-acquired and linked to food animals (i.e. livestock raised for meat and dairy products). In this study, we examined whether numerically dominant, commensal Escherichia coli strains from humans (n=63 isolates) and domestic animals (n=174 isolates) in the same community and with matching phenotypic AMR patterns, were clonally related or shared the same plasmids. We identified 25 multi-drug resistant isolates (i.e. resistant to 3 or more antimicrobial classes) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes and plasmids carrying the AMR genes using conjugation, replicon typing and whole genome sequencing. None of the MDR E. coli isolates (from children and domestic animals) analyzed were clonal. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. Our findings suggest that nonclonal resistance gene dissemination is common in this community and that diverse plasmids carrying AMR genes presents a significant challenge for understanding the movement of AMR in a community.IMPORTANCEEven though Escherichia coli strains may share nearly identical AMR profiles, AMR genes, and overlap in space and time, the diversity of clones and plasmids challenges to research that aims to identify sources of AMR. Horizontal gene transfer appears to play a much larger role than clonal expansion in the spread of AMR in the community.


Author(s):  
Juan Martín Talavera-Gonzalez ◽  
Martin Talavera-Rojas ◽  
Edgardo Soriano-Vargas ◽  
JESUS VAZQUEZ-NAVARRETE ◽  
Celene Salgado-Miranda

The transmission of multi-drug resistant pathogens and antimicrobial-resistant genes is an arising problem with multiple factors involved (humans, domestic animals, wildlife). The aim of this study was to investigate the presence of Escherichia coli isolates with different antimicrobial resistance genes from backyard poultry and demonstrate the in vitro transduction phenomenon of these genes between phages from migratory wild-birds and poultry E. coli isolates. We collected 197 E. coli isolates from chicken, turkeys, and ducks in backyard production units (northern region of the State of Mexico). Isolates were resistant to ampicillin (80.7%), tetracycline (64.4%), carbenicillin (56.3%), and nalidixic acid and trimethoprim-sulfamethoxazole (both, 26.9%). Moreover, blaTEM (56.3%), tetB (20.8%), tetA (19.2%), sulI (7.6%), sulII (10.1%), qnrA (9.6%) and qnrB (5.5%) genes were found. In vitro transduction using phages from migratory wild birds sampled in the wetland Chimaliapan (State of Mexico) was worked out. It was possible to transduce qnrA, tetB, blaTEM and sulII genes to E. coli isolates from poultry. This is the first report that describes the transduction of antimicrobial resistance genes from phages of migratory wild birds to poultry and suggests the possible transmission in backyard production units.


Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 383 ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Ali El-Kholy ◽  
Emad M. Riad ◽  
Hossam E. Mohamed ◽  
Mahmoud M. Elhaig ◽  
...  

Calf diarrhea is one of the considerable infectious diseases in calves, which results in tremendous economic losses globally. To determine the prevalence of Shiga-toxigenic E. coli (STEC) and Enterotoxigenic E. coli (ETEC) incriminated in calf diarrhea, with special reference to Shiga- toxins genes (stx1 and stx2) and enterotoxins genes (lt and sta) that govern their pathogenesis, as well as the virulence genes; eaeA (intimin) and f41(fimbrial adhesion), and the screening of their antibiogram and antimicrobial resistance genes; aadB, sul1, and bla-TEM, a total of 274 fecal samples were collected (April 2018–Feb 2019) from diarrheic calves at different farms in El-Sharqia Governorate, Egypt. The bacteriological examination revealed that the prevalence of E. coli in diarrheic calves was 28.8%. The serotyping of the isolated E. coli revealed 7 serogroups; O26, O128, O111, O125, O45, O119 and O91. Furthermore, the Congo red binding test was carried out, where 89.8% of the examined strains (n = 71) were positive. The antibiogram of the isolated strains was investigated; the majority of E. coli serotypes exhibit multidrug resistance (MDR) to four antimicrobial agents; neomycin, gentamycin, streptomycin, and amikacin. Polymerase chain reaction (PCR) was used to detect the prevalence of the virulence genes; stx1, stx2 lt, sta, f41 and eaeA, as well as the antimicrobial resistance genes; aadB, sul1, and bla-TEM. The prevalence of STEC was 20.2% (n = 16), while the prevalence of ETEC was 30.4% (n = 24). Briefly, the Shiga toxins genes; stx1 and stx2, are the most prevalent virulence genes associated with STEC, which are responsible for the pathogenesis of the disease and helped by the intimin gene (eaeA). In addition, the lt gene is the most prevalent enterotoxin gene accompanied by the ETEC strains, either alone or in combination with sta and/or f41 genes. The majority of pathogenic E. coli incriminated in calf diarrhea possesses the aadB resistance gene, followed by the sul1 gene. Enrofloxacin, florfenicol, amoxicillin-clavulanic acid, and ampicillin-sulbactam, are the most effective antimicrobial agents against the isolated STEC and ETEC strains.


Author(s):  
Katarzyna Ćwiek ◽  
Anna Woźniak-Biel ◽  
Magdalena Karwańska ◽  
Magdalena Siedlecka ◽  
Christine Lammens ◽  
...  

Abstract Background A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. Methods In this study, 318 E. coli strains were characterized by the prevalence of mcr1–mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. Results Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. Conclusions Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.


Sign in / Sign up

Export Citation Format

Share Document