scholarly journals Overexpression of ThSOS from Tamarix hispida improves salt tolerance

2019 ◽  
Author(s):  
Zhongyuan Liu ◽  
Qingjun Xie ◽  
Feifei Tang ◽  
Jing Wu ◽  
Wenfang Dong ◽  
...  

Abstract Highlights ● The functional characterization of ThSOS genes were investigated by bioinformatics analysis and molecular characterization. ● ThSOS genes can respond to abiotic stresses (salt and drought) and hormone treatment (ABA). ● ThSOS3 gene overexpression increased ROS-scavenging capability and decreasing lipid peroxidation in cell membrane. ● ThSOS3 could effectively enhance the tolerance of transgenic T. hispida and Arabidopsis to salt stress.

Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 623
Author(s):  
Sidra Habib ◽  
Yee Yee Lwin ◽  
Ning Li

Adverse environmental factors like salt stress, drought, and extreme temperatures, cause damage to plant growth, development, and crop yield. GRAS transcription factors (TFs) have numerous functions in biological processes. Some studies have reported that the GRAS protein family plays significant functions in plant growth and development under abiotic stresses. In this study, we demonstrated the functional characterization of a tomato SlGRAS10 gene under abiotic stresses such as salt stress and drought. Down-regulation of SlGRAS10 by RNA interference (RNAi) produced dwarf plants with smaller leaves, internode lengths, and enhanced flavonoid accumulation. We studied the effects of abiotic stresses on RNAi and wild-type (WT) plants. Moreover, SlGRAS10-RNAi plants were more tolerant to abiotic stresses (salt, drought, and Abscisic acid) than the WT plants. Down-regulation of SlGRAS10 significantly enhanced the expressions of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) to reduce the effects of reactive oxygen species (ROS) such as O2− and H2O2. Malondialdehyde (MDA) and proline contents were remarkably high in SlGRAS10-RNAi plants. Furthermore, the expression levels of chlorophyll biosynthesis, flavonoid biosynthesis, and stress-related genes were also enhanced under abiotic stress conditions. Collectively, our conclusions emphasized the significant function of SlGRAS10 as a stress tolerate transcription factor in a certain variety of abiotic stress tolerance by enhancing osmotic potential, flavonoid biosynthesis, and ROS scavenging system in the tomato plant.


2018 ◽  
Vol 20 (1) ◽  
pp. 93
Author(s):  
Jin Wang ◽  
Feiyi Huang ◽  
Xiong You ◽  
Xilin Hou

In plants, heptahelical proteins (HHPs) have been shown to respond to a variety of abiotic stresses, including cold stress. Up to the present, the regulation mechanism of HHP5 under low temperature stress remains unclear. In this study, BcHHP5 was isolated from Pak-choi (Brassica rapa ssp. chinensis cv. Suzhouqing). Sequence analysis and phylogenetic analysis indicated that BcHHP5 in Pak-choi is similar to AtHHP5 in Arabidopsis thaliana. Structure analysis showed that the structure of the BcHHP5 protein is relatively stable and highly conservative. Subcellular localization indicated that BcHHP5 was localized on the cell membrane and nuclear membrane. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed that BcHHP5 was induced to express by cold and other abiotic stresses. In Pak-choi, BcHHP5-silenced assay, inhibiting the action of endogenous BcHHP5, indicated that BcHHP5-silenced might have a negative effect on cold tolerance, which was further confirmed. All of these results indicate that BcHHP5 might play a role in abiotic response. This work can serve as a reference for the functional analysis of other cold-related proteins from Pak-choi in the future.


Gene ◽  
2020 ◽  
Vol 740 ◽  
pp. 144514 ◽  
Author(s):  
Xin Niu ◽  
Tengli Luo ◽  
Hongyan Zhao ◽  
Yali Su ◽  
Wanquan Ji ◽  
...  

2017 ◽  
Vol 210 ◽  
pp. 9-17 ◽  
Author(s):  
Miguel Garriga ◽  
Natalia Raddatz ◽  
Anne-Aliénor Véry ◽  
Hervé Sentenac ◽  
María E. Rubio-Meléndez ◽  
...  

2020 ◽  
Author(s):  
Minghui Mou ◽  
Qijuan Wang ◽  
Yanli Chen ◽  
Diqiu Yu ◽  
Ligang Chen

Sign in / Sign up

Export Citation Format

Share Document