Reversed paired-gRNA plasmid cloning strategy for efficient genome editing in Escherichia coli
Abstract BackgroundThe CRISPR-Cas9 system is a powerful tool for genome editing in various organisms. Several of its applications, including the generation of large deletions, require co-expression of two distinct guide RNAs (gRNAs). However, the instability of paired-gRNA plasmids prevents these applications from being scalable in Escherichia coli. Coexpressing paired gRNAs under the driving of independent but identical promoters in the same direction triggers plasmid recombination, due to the presence of direct repeats (DRs). ResultsIn this study, plasmid deletion between DRs occurred with high frequencies during plasmid construction and subsequent duplication processes, when three DRs-involved paired-gRNA plasmids cloning strategies were tested. This recombination phenomenon was RecA-independent, in agreement with the replication slippage model. To completely eliminate the DRs-induced plasmid instability, a reversed paired-gRNA plasmids (RPGPs) cloning strategy was developed by converting DRs to the more stable invert repeats (IRs). ConclusionsUsing RPGPs, we achieved a rapid deletion of chromosome fragments up to 100 kb with high efficiency of 83.33% in Escherichia coli. This study provides general solutions to construct stable plasmids containing short DRs, which can improve the performances of CRISPR systems that rely on paired gRNAs, and also facilitate other applications involving repeated genetic parts.