plasmid recombination
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 9 (4) ◽  
pp. 720
Author(s):  
Julian Schwanbeck ◽  
Wolfgang Bohne ◽  
Ufuk Hasdemir ◽  
Uwe Groß ◽  
Yvonne Pfeifer ◽  
...  

Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sarah L. Goldstein ◽  
Jonathan L. Klassen

Actinobacteria belonging to the genus Pseudonocardia have evolved a close relationship with multiple species of fungus-growing ants, where these bacteria produce diverse secondary metabolites that protect the ants and their fungal mutualists from disease. Recent research has charted the phylogenetic diversity of this symbiosis, revealing multiple instances where the ants and Pseudonocardia have formed stable relationships in which these bacteria are housed on specific regions of the ant’s cuticle. Parallel chemical and genomic analyses have also revealed that symbiotic Pseudonocardia produce diverse secondary metabolites with antifungal and antibacterial bioactivities, and highlighted the importance of plasmid recombination and horizontal gene transfer for maintaining these symbiotic traits. Here, we propose a multi-level model for the evolution of Pseudonocardia and their secondary metabolites that includes symbiont transmission within and between ant colonies, and the potentially independent movement and diversification of their secondary metabolite biosynthetic genes. Because of their well-studied ecology and experimental tractability, Pseudonocardia symbionts of fungus-growing ants are an especially useful model system to understand the evolution of secondary metabolites, and also comprise a significant source of novel antibiotic and antifungal agents.


2020 ◽  
Author(s):  
S Slow ◽  
T Anderson ◽  
DR Murdoch ◽  
S Bloomfield ◽  
D Winter ◽  
...  

AbstractLegionella longbeachae is an environmental bacterium that is commonly found in soil and composted plant material. In New Zealand (NZ) it is the most clinically significant Legionella species causing around two-thirds of all notified cases of Legionnaires’ disease. Here we report the sequencing and analysis of the geo-temporal genetic diversity of 54 L. longbeachae serogroup 1 (sg1) clinical isolates that were derived from cases from around NZ over a 22-year period, including one complete genome and its associated methylome.Our complete genome consisted of a 4.1 Mb chromosome and a 108 kb plasmid. The genome was highly methylated with two known epigenetic modifications, m4C and m6A, occurring in particular sequence motifs within the genome. Phylogenetic analysis demonstrated the 54 sg1 isolates belonged to two main clades that last shared a common ancestor between 108 BCE and 1608 CE. These isolates also showed diversity at the genome-structural level, with large-scale arrangements occurring in some regions of the chromosome and evidence of extensive chromosomal and plasmid recombination. This includes the presence of plasmids derived from recombination and horizontal gene transfer between various Legionella species, indicating there has been both intra-species and inter-species gene flow. However, because similar plasmids were found among isolates within each clade, plasmid recombination events may pre-empt the emergence of new L. longbeachae strains.Our high-quality reference genome and extensive genetic diversity data will serve as a platform for future work linking genetic, epigenetic and functional diversity in this globally important emerging environmental pathogen.Author SummaryLegionnaires’ disease is a serious, sometimes fatal pneumonia caused by bacteria of the genus Legionella. In New Zealand, the species that causes the majority of disease is Legionella longbeachae. Although the analyses of pathogenic bacterial genomes is an important tool for unravelling evolutionary relationships and identifying genes and pathways that are associated with their disease-causing ability, until recently genomic data for L. longbeachae has been sparse. Here, we conducted a large-scale genomic analysis of 54 L. longbeachae isolates that had been obtained from people hospitalised with Legionnaires’ disease between 1993 and 2015 from 8 regions around New Zealand. Based on our genome analysis the isolates could be divided into two main groups that persisted over time and last shared a common ancestor up to 1700 years ago. Analysis of the bacterial chromosome revealed areas of high modification through the addition of methyl groups and these were associated with particular DNA sequence motifs. We also found there have been large-scale rearrangements in some regions of the chromosome, producing variability between the different L. longbeacahe strains, as well as evidence of gene-flow between the various Legionella species via the exchange of plasmid DNA.


2020 ◽  
Vol 8 (7) ◽  
pp. 1074 ◽  
Author(s):  
Hongyang Zhang ◽  
Mingding Chang ◽  
Xiaochen Zhang ◽  
Peiyan Cai ◽  
Yixin Dai ◽  
...  

Plasmid-mediated quinolone resistance (PMQR) remains one of the main mechanisms of bacterial quinolone resistance and plays an important role in the transmission of antibiotic resistance genes (ARGs). In this study, two novel plasmids, p3M-2A and p3M-2B, which mediate quinolone resistance in Proteus vulgaris strain 3M (P3M) were identified. Of these, only p3M-2B appeared to be a qnrD-carrying plasmid. Both p3M-2A and p3M-2B could be transferred into Escherichia coli, and the latter caused a twofold change in ciprofloxacin resistance, according to the measured minimum inhibitory concentration (MIC). Plasmid curing/complementation and qRT-PCR results showed that p3M-2A can directly regulate the expression of qnrD in p3M-2B under treatment with ciprofloxacin, in which process, ORF1 was found to play an important role. Sequence alignments and phylogenetic analysis revealed the evolutionary relationships of all reported qnrD-carrying plasmids and showed that ORF1–4 in p3M-2B is the most conserved backbone for the normal function of qnrD-carrying plasmids. The identified direct repeats (DR) suggested that, from an evolutionary perspective, p3M-2B may have originated from the 2683-bp qnrD-carrying plasmid and may increase the possibility of plasmid recombination and then of qnrD transfer. To the best of our knowledge, this is the first identification of a novel qnrD-carrying plasmid isolated from a P. vulgaris strain of shrimp origin and a plasmid that plays a regulatory role in qnrD expression. This study also sheds new light on plasmid evolution and on the mechanism of horizontal transfer of ARGs encoded by plasmids.


2019 ◽  
Author(s):  
Tingting Ding ◽  
Chaoyong Huang ◽  
Zeyu Liang ◽  
Xiaoyan Ma ◽  
Ning Wang ◽  
...  

Abstract BackgroundThe CRISPR-Cas9 system is a powerful tool for genome editing in various organisms. Several of its applications, including the generation of large deletions, require co-expression of two distinct guide RNAs (gRNAs). However, the instability of paired-gRNA plasmids prevents these applications from being scalable in Escherichia coli. Coexpressing paired gRNAs under the driving of independent but identical promoters in the same direction triggers plasmid recombination, due to the presence of direct repeats (DRs). ResultsIn this study, plasmid deletion between DRs occurred with high frequencies during plasmid construction and subsequent duplication processes, when three DRs-involved paired-gRNA plasmids cloning strategies were tested. This recombination phenomenon was RecA-independent, in agreement with the replication slippage model. To completely eliminate the DRs-induced plasmid instability, a reversed paired-gRNA plasmids (RPGPs) cloning strategy was developed by converting DRs to the more stable invert repeats (IRs). ConclusionsUsing RPGPs, we achieved a rapid deletion of chromosome fragments up to 100 kb with high efficiency of 83.33% in Escherichia coli. This study provides general solutions to construct stable plasmids containing short DRs, which can improve the performances of CRISPR systems that rely on paired gRNAs, and also facilitate other applications involving repeated genetic parts.


2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Kieran I. Chacko ◽  
Mitchell J. Sullivan ◽  
Colleen Beckford ◽  
Deena R. Altman ◽  
Brianne Ciferri ◽  
...  

ABSTRACTWhole-genome sequencing was used to examine a persistentEnterococcus faeciumbacteremia that acquired heteroresistance to three antibiotics in response to prolonged multidrug therapy. A comparison of the complete genomes before and after each change revealed the emergence of known resistance determinants for vancomycin and linezolid and suggested that a novel mutation infabF, encoding a fatty acid synthase, was responsible for daptomycin nonsusceptibility. Plasmid recombination contributed to the progressive loss of vancomycin resistance after withdrawal of the drug.


2013 ◽  
Vol 79 (12) ◽  
pp. 3724-3733 ◽  
Author(s):  
Frank O. Aylward ◽  
Bradon R. McDonald ◽  
Sandra M. Adams ◽  
Alejandra Valenzuela ◽  
Rebeccah A. Schmidt ◽  
...  

ABSTRACTSphingomonads comprise a physiologically versatile group within theAlphaproteobacteriathat includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm thatSphingomonas,Sphingobium,Sphingopyxis, andNovosphingobiumare well-resolved monophyletic groups with the exception ofSphingomonassp. strain SKA58, which we propose belongs to the genusSphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.


2012 ◽  
Vol 56 (9) ◽  
pp. 4958-4960 ◽  
Author(s):  
Annette Søndergaard ◽  
Alvaro San Millan ◽  
Alfonso Santos-Lopez ◽  
Signe M. Nielsen ◽  
Bruno Gonzalez-Zorn ◽  
...  

ABSTRACTTEM-1 is the dominant β-lactamase ofHaemophilus influenzaeand can be located on small plasmids. Three distinct plasmids with sizes from 4,304 to 5,646 nucleotides (nt) were characterized: pA1606, pA1209, and pPN223. In addition to TEM-1 and a replication enzyme of the Rep 3 superfamily, pA1606 carries a Tn3resolvase gene and pA1606 and pA1209 carry an open reading frame (ORF) similar to a plasmid recombination enzyme gene described in Gram-positive bacteria. The plasmids transformed strain Rd to the ampicillin-resistant phenotype.


2008 ◽  
Vol 40 (3) ◽  
Author(s):  
Sofia C. Ribeiro ◽  
Pedro H. Oliveira ◽  
Duarte M. F. Prazeres ◽  
Gabriel A. Monteiro

Sign in / Sign up

Export Citation Format

Share Document