scholarly journals In vitro antimalarial activity of selected medicinal plants native to Tigray region of Ethiopia

2019 ◽  
Author(s):  
Gebretsadkan Hintsa Tekulu ◽  
Sarah D’Alessandro ◽  
Silvia Parapini ◽  
Nicoletta Basilico ◽  
Aman Karim

Abstract BackgroundVarious medicinal plants are used as alternative remedies for the management of malaria, an important infectious disease responsible for around 228 million cases and 405,000 deaths worldwide in 2018. The worsening of the disease is highly associated to an emergence of drug-resistant parasites. Hence, the search of new alternative antimalarial agents from traditionally used medicinal plants is the most viable approach. The current study was aimed to evaluate the in vitro antiplasmodial property of Aloe elegans, Aloe monticola, Capparis tomentosa, Hygrophila schulli and Tephrosia gracilipes extracts.Methods Leaf latexes were collected from Aloe elegans and Aloe monticola, whereas cold maceration with 70% ethanol was used to prepare extracts from roots of Capparis tomentosa and Tephrosia gracilipes , and leaves of Hygrophila schulli . The antiplasmodial activity of the extracts against asexual and gametocyte stages was tested using parasite lactate dehydrogenase assay and luciferase assay, respectively. Cell cytotoxicity was assessed on human microvascular endothelial cells by the MTT assayResults Of the five selected medicinal plants, leaf latex of Aloe monticola showed the best activity against both asexual stages and stage V gametocytes of Plasmodium falciparum . The leaf latex of Aloe elegans and ethanolic extract of Hygrophila schulli leaves also showed antiplasmodial property against asexual stages. On the contrary, the roots of Capparis tomentosa and Tephrosa gracilipes were inactive.Conclusion Findings of this study may partly support the acclaimed traditional use of the leaves latexes of both Aloe elegans and Aloe monticola and the ethanolic extract of Hygrophila schulli leaves for the management of mild to moderate malaria.

Author(s):  
Aisha Abdulrazak ◽  

The search for antimalarial compounds has been necessitated by the resistance of Plasmodium falciparum to almost all antimalarial drugs. The aim of this research was to determine in-vitro antimalarial activity of extracts of some indigenous plants species in Kebbi State. Plant extraction was carried-out by maceration using ethanol and water as solvent. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates of P. falciparum using WHO method of in-vitro micro test. Phytochemical screening was also carried out on the extract to deduce the active chemicals present in the plant extract. All plant extracts demonstrate dose dependent antimicrobial activities with IC50 Less than 50%. However highest growth inhibition of the P. falciparum was demonstrated by aqueous and ethanol extract of A. indica with IC50 7.4µg/ml and 8.6µg/ml respectively followed by ethanol and aqueous extract of C. occidentalis with IC50 15.3µg/ml and 18.0µg/ml respectively. Least antimalarial activity was demonstrated by aqueous extract of M. oleifera with IC50 33.5µg/ml while ethanolic extract of M. oleifera demonstrated IC50 of 20.50µg/ml. M. indica ethanolic and aqueous extract also demonstrated moderate antimalarial activity with IC50 18.8µg/ml and 24.5µg/ml. The phytochemical screening of medicinal plants showed the presence of tannins, saponins, alkaloids, flavonoid, phenol and cardiac glycosides in the extracts, which may be responsible for the antiplasmodial activity. This result justifies the traditional use of the plant in malaria treatment and further research is suggested to identify and characterize the active principles from the plants. Keywords: Antimalaria, Invitro, Medicinal Plants, Malaria, Kebbi


2020 ◽  
Vol 16 ◽  
Author(s):  
Haicheng Liu ◽  
Yushi Futamura ◽  
Honghai Wu ◽  
Aki Ishiyama ◽  
Taotao Zhang ◽  
...  

Background: Malaria is one of the most devastating parasitic diseases, yet the discovery of antimalarial agents remains profoundly challenging. Very few new antimalarials have been developed in the past 50 years, while the emergence of drug-resistance continues to appear. Objective: This study focuses on the discovery, design, synthesis, and antimalarial evaluation of 3-cinnamamido-N-substituted benzamides. Method: In this study, a screening of our compound library was carried out against the multidrug-sensitive Plasmodium falciparum 3D7 strain. Derivatives of the hit were designed, synthesized and tested against P. falciparum 3D7 and the in vivo antimalarial activity of the most active compounds was evaluated using the method of Peters’ 4-day suppressive test. Results: The retrieved hit compound 1 containing a 3-cinnamamido-N-substituted benzamide skeleton showed moderate antimalarial activity (IC50 = 1.20 µM) for the first time. A series of derivatives were then synthesized through a simple four-step workflow, and half of them exhibited slightly better antimalarial effect than the precursor 1 during the subsequent in vitro assays. Additionally, compounds 11, 23, 30 and 31 displayed potent activity with IC50 values of approximately 0.1 µM, and weak cytotoxicity against mammalian cells. However, in vivo antimalarial activity is not effective which might be ascribed to the poor solubility of these compounds. Conclusion: In this study, phenotypic screen of our compound library resulted in the first report of 3-cinnamamide framework with antimalarial activity and 40 derivatives were then designed and synthesized. Subsequent structure-activity studies showed that compounds 11, 23, 30 and 31 exhibited the most potent and selective activity against P. falciparum 3D7 strain with IC50 values around 0.1 µM. Our work herein sets another example of phenotypic screen-based drug discovery, leading to potentially promising candidates of novel antimalarial agents once given further optimization.


2009 ◽  
Vol 6 (4) ◽  
pp. 453-456 ◽  
Author(s):  
Mohammed A. Alshawsh ◽  
Ramzi A. Mothana ◽  
Hassan A. Al-shamahy ◽  
Salah F. Alsllami ◽  
Ulrike Lindequist

Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. In the present study, six selected plants (Acalypha fruticosa,Azadirachta indica,Cissus rotundifolia,Echium rauwalfii,Dendrosicyos socotranaandBoswellia elongata) commonly used in Yemen by traditional healers for the treatment of malaria as well as other diseases, were collected from different localities of Yemen, dried and extracted with methanol and water successfully. The antiplasmodial activity of the extracts was evaluated against fresh clinical isolates ofPlasmodium falciparum. The selectivity parameters to evaluate the efficacy of these medicinal plants were measured byin vitromicro test (Mark III) according to World Health Organization (WHO) 1996 & WHO 2001 protocols of antimalarial drug tests. Among the investigated 12 extracts, three were found to have significant antiplasmodial activity with IC50values less than 4 µg/ml, namely the water extracts ofA. fruticosa,A. indicaandD. socotrana. Six extracts showed moderate activity with IC50values ranging from 10 to 30 µg/ml and three appeared to be inactive with IC50values more than 30 µg/ml. In addition, preliminary phytochemical screening of the methanolic and aqueous extracts indicated the presence of saponins, tannins, flavonoids, terpenoids, polysaccharides and peptides.


Author(s):  
Mehul Zaveri ◽  
Neha Kawathekar

Objective: Current therapies to treat P. falciparum malaria are heavily reliant on artemisinin-based combinations. However, resistance to artemisinin has recently been identified, and resistance to key artemisinin partner drugs is already widespread. Therefore, there is an urgent need for new antimalarial drugs with improved attributes over older therapies. The objective of this research work is to synthesize new antimalarial agents more effective against clinically relevant malarial strains.Methods: In present work, a series of ten 3-phenyl-2-thioxothiazolidin-4-one (MF1-MF10) derivatives, were synthesized by Knoevenagel condensation of N-phenyl rhodanine (I1) with substituted aromatic or hetro aromatic aldehydes using microwave irradiation. N-phenyl rhodanine (I1) was synthesized by a conventional reaction involving methyl-2-mercaptoacetate (1) and phenyl Isothiocyanates in presence of triethylamine. All the synthesized compounds were characterized by various spectroscopic techniques and evaluated for in-vitro antimalarial activity by microdilution technique against resistance strains of Plasmodium falciparum.Results: The antimalarial activity data showed that six compounds (MF1, MF3, MF4, MF5, MF7 and MF8) exhibited IC50 values ranging from 1.0-1.30 µg/ml, three compounds (MF2, MF6 and MF10) displayed IC50 values in the range of 0.9-1.0 µg/ml. Compound MF9 showed most significant result with maximum activity (IC50 = 0.85µg/ml).Conclusion: The antimalarial activity results revealed that compound MF9 possess potent activity and could be identified as a promising lead for further investigation.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


2019 ◽  
Vol 11 (3) ◽  
pp. 376-382
Author(s):  
Abosede M. EBABHI ◽  
Adedotun A. ADEKUNLE ◽  
Yoma I. OGHENERHABOKE

Oral hygiene is important to the generality of the human healthcare system. For this, the antifungal activities of the aqueous and ethanol extracts of four medicinal plants of Jatropha curcas (stem), Eucaluptus golbulus (leaves), Vernonia amygdalina (stem) and Zanthoxylum zanthoxyloides (root) were carried out in vitro against three species of Candida associated with oral thrush namely C. albicans, C. glabrata, C. tropicalis using the disc diffusion agar assay. The zones of inhibition varied with the test organisms as well as the extracts. The ethanolic extract of Jatropha curcas showed the highest zone of inhibition of 10.88 ± 0.22 mm against C. albicans while the least zone of inhibition (6.13 ± 0.13 mm) was exhibited by the ethanol extract of Z. zanthoxyloides on C. glabrata. The preliminary phytochemical screening showed the presence of tannin, saponin, alkaloids, flavonoids and reducing sugar in all plant samples. This study can be further used as a foundation for the screening of phytochemical constituents by pharmaceuticals for the control and eradication of oral thrush.


2009 ◽  
Vol 53 (4) ◽  
pp. 1320-1324 ◽  
Author(s):  
M. O. Faruk Khan ◽  
Mark S. Levi ◽  
Babu L. Tekwani ◽  
Shabana I. Khan ◽  
Eiichi Kimura ◽  
...  

ABSTRACT In an attempt to augment the efficacy of 7-chloro 4-aminoquinoline analogs and also to overcome resistance to antimalarial agents, we synthesized three cyclen (1,4,7,10-tetraazacyclododecane) analogs of chloroquine [a bisquinoline derivative, 7-chloro-4-(1,4,7,10-tetraaza-cyclododec-1-yl)-quinoline HBr, and a 7-chloro-4-(1,4,7,10-tetraaza-cyclododec-1-yl)-quinoline-Zn2+ complex]. The bisquinoline displays the most potent in vitro and in vivo antimalarial activities. It displays 50% inhibitory concentrations (IC50s) of 7.5 nM against the D6 (chloroquine-sensitive) clone of Plasmodium falciparum and 19.2 nM against the W2 (chloroquine-resistant) clone, which are comparable to those of artemisinin (10.6 and 5.0 nM, respectively) and lower than those of chloroquine (10.7 and 87.2 nM, respectively), without any evidence of cytotoxicity to mammalian cells, indicating a high selectivity index (>1,333 against D6 clone and >521 against W2 clone). Potent antimalarial activities of the bisquinoline against chloroquine- and mefloquine-resistant strains of P. falciparum were also confirmed by in vitro [3H]hypoxanthine incorporation assay. The in vivo antimalarial activity of the bisquinoline, as determined in P. berghei-infected mice, is comparable to that of chloroquine (50% effective dose, ≤1.1 mg/kg when given orally); no apparent toxicity has been observed up to the highest dose tested (3 × 30 mg/kg). The bisquinoline inhibits in vitro hemozoin (β-hematin) formation with an IC50 of 1.1 μM, which is about 10-fold more potent than chloroquine (IC50 9.5 μM). Overall, this article describes the discovery of a new class of cyclen 4-aminoquinoline analogs as potent antimalarial drugs.


Author(s):  
I. A. Hassan ◽  
I. Abdulraheem ◽  
H. O. Emun ◽  
O. M. Omole

Aims: This study was carried out to investigate the antimicrobial activity of Chrysophyllum albidum leaves extract on selected Gastro-instestinal bacteria such as Salmonella typhimurium, Shigella dysentariae, Vibrio cholera, Escherichia coli and Clostridium perfringens. Methodology: The leaves were extracted using ethanol, methanol and distilled water; the concentration of the extracts employed were 100 mg/ml, 200 mg/ml, 400 mg/ml and 500 mg/ml respectively; however the   leaf extracts of Chrysophyllum albidum were screened for anti-microbial activity using the in vitro cup-plate method of agar diffusion technique with concentration of 10-5cells/ml of the selected bacteria. Simultaneously, 30 µg tetracycline and 30 µg metronidazole were used as positive control. Results: The result showed that the most active among them is Tetracycline; followed by ethanolic extract, aqueous extract, methanolic extract and metronidazole extract respectively on the tested bacteria. Conclusion: This research justifies the traditional use of the leaves of Chrysophyllum albidum for the therapeutic purposes; hence can be commercialized by pharmaceutical outfit; if not for anything but its availability and readily for human consumption.


2020 ◽  
Vol 14 (3) ◽  
pp. 1855-1861
Author(s):  
Isra Tayseer ◽  
Hanan Azzam ◽  
Nehaya Al-Karablieh ◽  
Amal Mayyas ◽  
Talal Aburjai

The present study was conducted to assess the in vitro activities of folk medicinal plants in combination with levofloxacin against TG1 and mutant KAM3-1(∆acrB-∆tolC) Escherichia coli strains. Plants were chosen based on their traditional use in combination with antibiotics among laymen. Standard protocols were followed to examine the antimicrobial activity of plant extracts and levofloxacin against E. coli in term of their minimum inhibitory concentrations (MICs) and to evaluate the plant extracts-levofloxacin interaction using checkerboard method. Among the twelve plants investigated, Thymus vulgaris, Zingiber officinale, Teucrium polium, Matricaria chamomilla and Curcuma longa had the best antimicrobial activities against E. coli strains with MIC values at 250 μg/ml. It is noteworthy to mention that other folk plants extracts reveled no effects against E coli strains. Furthermore, additive interactions were observed between levofloxacin and T. polium or T. vulgaris against E. coli wild-type TG1 strain. There was no antagonism being observed in this study. The detection of additive interaction between the extracts and levofloxacin demonstrates the prospective of these folk medicinal plants as a source of compounds to modulate antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document