scholarly journals Improving production of Streptomyces griseus trypsin for its application in processing insulin precursor

2019 ◽  
Author(s):  
YunFeng Zhang ◽  
Qixing Liang ◽  
Chuanzhi Zhang ◽  
Juan Zhang ◽  
Guocheng Du ◽  
...  

Abstract Background: Trypsin has a plenty application in food and pharmaceutical manufacture. While, the commercial trypsin is usually extracted from pork pancreas, which has the risk of infectious and immunogenicity. Therefore, the microbial Streptomyces griseus trypsin (SGT) is a prior alternation because it processes efficient hydrolysis activity without the aforementioned risk. The remarkable hydrolysis efficiency of SGT caused its autolysis, and five autolysis sites R21, R32, K122, R153, and R201 were identified from its' autolysate. Results: The tbcf (K101A, R201V) mutant was screened by directed selection approach for improved activity in flask culture (60.85 ± 3.42 U·mL -1 , increased 1.5-fold). From the molecular dynamics simulation, the K101A/R201V mutation shortened the distant between catalytical residues D102 and H57 from 6.5 Å vs 7.0 Å, which afforded the improved specific activity 1527.96 ± 62.81 U·mg -1 . Further, the production of trypsin was increased 302.8% (689.47 ± 6.78 U·mL −1 ) in 3-L bio-reactor, with co-overexpression of chaperones SSO2 and UBC1 in Pichia pastoris. Conclusions: The SGT protein could be an adequate trypsin for insulin production. When working with hydrolysates analysis and direction selection, the tbcf (K101A, R201V) mutant increased 1.5-fold activity. Further, the production of trypsin was improved 3-fold by overexpressing chaperone protein in Pichia pastoris . The future study should be emphasized on the application of SGT in insulin manufacture and pharmaceutical.

2014 ◽  
Vol 6 (3) ◽  
pp. 288-292 ◽  
Author(s):  
Tien Cuong Nguyen ◽  
Thi Tuyen Do ◽  
Thi Hien Trang Nguyen ◽  
Dinh Thi Quyen

L-asparaginase (EC 3.5.1.1), a therapeutic enzyme used in the treatment of childhood acute lymphoblastic leukemia (ALL). Hence, the goal of this work is study the expression and evaluation of hydrolysis activity of native sequence (X12746) encoding for L-asparaginase from Erwinia chrysanthemi NCPBB1125 in the popular expression system Pichia pastoris. The sequence of asn encoded for mature protein was expressed in P. pastoris SMD1168 and X33. SDS-PAGE analysis showed recombinant L-asparaginase was secreted efficiently. Stable and high hydrolysis activity of extracellular L-asparaginase in P. pastoris SMD1168 making it a potential candidate to produce recombinant protein. After purification, a specific band whose appearance approximately 45 kDa indicating the glycosylated protein with specific activity by 6.251 Umg-1 and about 3 folds purifications. L-asparaginase (EC 3.5.1.1), một loại enzyme được sử dụng trong điều trị bệng ung thư bạch cầu mãn tính ở trẻ em. Mục tiêu của nghiên cứu này là biểu hiện và đánh giá hoạt tính thủy phân của L-asparaginase mã hóa bởi đoạn gene (X12746) tương ứng từ Erwinia chrysanthemi NCPBB1125 được biểu hiện trong nấm men Pichia pastoris. Gene đã được cắt signal peptide và biểu hiện trong P. pastoris SMD1168 and X33. Qua phân tích kết quả điện di SDS-PAGE của môi trường sau lên men, L-asparaginase tái tổ hợp được tìm thấy trong dịch ngoại bào của P. pastoris. Với khả năng sản xuất protein có hoạt tính cao hơn so với chủng P. pastoris X33, SMD1168 được lựa chọn để biểu hiện L-asparaginase tái tổ hợp. Sau khi tinh sạch, sự xuất hiện của một băng có kích khối lượng phân tử xấp xỉ 45 kDa trên điện di SDS-PAGE cho thấy protein tái tổ hợp đã bị glycosyl hóa với hoạt tính riêng 6.251 Umg-1 và đạt độ sạch 3.471 lần.


Author(s):  
Selfela Restu Adina ◽  
Antonius Suwanto ◽  
Anja Meryandini ◽  
Esti Puspitasari

Abstract Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.


2008 ◽  
Vol 190 (14) ◽  
pp. 4859-4864 ◽  
Author(s):  
Carol Gross ◽  
Roderick Felsheim ◽  
Lawrence P. Wackett

ABSTRACT l-(−)-Azetidine-2-carboxylate (AC) is a toxic, natural product analog of l-proline. This study revealed the genes and biochemical strategy employed by Pseudomonas sp. strain A2C to detoxify and assimilate AC as its sole nitrogen source. The gene region from Pseudomonas sp. strain A2C required for detoxification was cloned into Escherichia coli and sequenced. The 7.0-kb region contained eight identifiable genes. Four encoded putative transporters or permeases for γ-amino acids or drugs. Another gene encoded a homolog of 2-haloacid dehalogenase (HAD). The encoded protein, denoted l-azetidine-2-carboxylate hydrolase (AC hydrolase), was highly overexpressed by subcloning. The AC hydrolase was shown to catalyze azetidine ring opening with the production of 2-hydroxy-4-aminobutyrate. AC hydrolase was further demonstrated to be a new hydrolytic member of the HAD superfamily by showing loss of activity upon changing aspartate-12, the conserved active site nucleophile in this family, to an alanine residue. The presence of a gene encoding a potential export chaperone protein, CsaA, adjacent to the AC hydrolase gene suggested that AC hydrolase might be found inside the periplasm in the native Pseudomonas strain. Periplasmic and cytoplasmic cell fractions from Pseudomonas sp. strain A2C were prepared. A higher specific activity for AC hydrolysis was found in the periplasmic fraction. Protein mass spectrometry further identified AC hydrolase and known periplasmic marker proteins in the periplasmic fraction. A model was proposed in which AC is hydrolyzed in the periplasm and the product of that reaction is transported into and further metabolized in the cytoplasm.


Author(s):  
Artur A Tkachenko ◽  
Anna N Kalinina ◽  
Larisa N Borshchevskaya ◽  
Sergey P Sineoky ◽  
Tatiana L Gordeeva

Abstract The phyCg gene encoding a new phytase from C. gillenii was optimized, synthesized, cloned, and expressed in Pichia pastoris. Analysis of the amino acid sequence of the enzyme showed that it belongs to the histidine acid phosphatase family. The amino acid sequence of the PhyCg phytase has the highest homology (73.49%) with a phytase sequence from Citrobacter braakii. The main characteristics for the purified recombinant phytase were established. The optimum pH and temperature were 4.5 and 50°C, respectively. The specific activity of the enzyme was 1577 U/mg. The Michaelis constant (Km) and the maximum reaction rate (Vmax) for sodium phytate were 0,185 mM and 2185 U/mg, respectively. The enzyme showed the pH and trypsin stability and had a high activity over a wide pH range.


2013 ◽  
Vol 79 (12) ◽  
pp. 3851-3855 ◽  
Author(s):  
Zhenmin Ling ◽  
Yi Liu ◽  
Shaolei Teng ◽  
Zhen Kang ◽  
Jingjing Zhang ◽  
...  

ABSTRACTApplyingin silicosimulations andin vitroexperiments, the amino acid proline was proved to have a profound influence onStreptomyces griseustrypsinogen, and the hydrogen bond between H57and D102was found to be crucial for trypsin activity. By introducing an artificial propeptide, IVEF, the titer of trypsin was increased 6.71-fold.


2020 ◽  
Author(s):  
Alei Zhang ◽  
Xiaofang Mo ◽  
Ning Zhou ◽  
Yingying Wang ◽  
Guoguang Wei ◽  
...  

Abstract Background: N-acetyl glucosamine (GlcNAc) and N-acetyl chitooligosaccharides (N-acetyl COSs) exhibit many biological activities, and have been widely used in the pharmaceutical, agriculture, food, and chemical industries. Particularly, higher N-acetyl COSs with degree of polymerization from 4 to 7 ((GlcNAc)4−(GlcNAc)7) show good antitumor and antimicrobial activity, as well as possessing strong stimulating activity towards natural killer cells. Thus, it is of great significance to discover a β-N-acetyl glucosaminidase (NAGase) that can not only produce GlcNAc, but also synthesize N-acetyl COSs. Results: The gene encoding the novel β-N-acetyl glucosaminidase, designated CmNAGase, was cloned from Chitinolyticbacter meiyuanensis SYBC-H1. The deduced amino acid sequence of CmNAGase contains a glycoside hydrolase family 20 catalytic module that shows low identity (12−35%) with the corresponding domain of most well-characterized NAGases. The CmNAGase gene was highly expressed with an active form in Escherichia coli BL21 (DE3) cells. The specific activity of purified CmNAGase toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) was 4,878.6 U/mg of protein. CmNAGase had a molecular mass of 92 kDa, and its optimum activity was at pH 5.4 and 40ºC. The Vmax, Km, Kcat, and Kcat/Km of CmNAGase for pNP-GlcNAc were 16,666.67 μmol min-1 mg-1, 0.50 μmol mL-1, 25,555.56 s-1, and 51,111.12 mL μmol-1 s-1, respectively. Analysis of the hydrolysis products of N-acetyl COSs and colloidal chitin revealed that CmNAGase is a typical exo-acting NAGase. Particularly, CmNAGase can synthesize higher N-acetyl COSs ((GlcNAc)3−(GlcNAc)7) from (GlcNAc)2−(GlcNAc)6, respectively, showed that it possesses transglycosylation activity. In addition, CmNAGase also has reverse hydrolysis activity toward GlcNAc, synthesizing various linked GlcNAc dimers. Conclusions: The observations recorded in this study that CmNAGase is a novel NAGase with exo-acting, transglycosylation, and reverse hydrolysis activities, suggests a possible application in the production of GlcNAc or higher N-acetyl COSs.


Author(s):  
Xuelian Qi ◽  
Junlan Shao ◽  
Yinchu Cheng ◽  
Xiaoying He ◽  
Yan Li ◽  
...  

Abstract: 2-O-α-D-Glucopyranosyl-L-ascorbic acid (AA-2G) is an important industrial derivative of L-ascorbic acid (AA), which has the distinct advantages of non-reducibility, antioxidation, and reproducible decomposition into L-ascorbic acid and glucose. Enzymatic synthesis is a preferred method for AA-2G production over alternative chemical synthesis owing to the regioselective glycosylation reaction. α-Glucosidase, an enzyme classed into O- glycoside hydrolases, may be used in glycosylation reactions to synthesize AA-2G. Here, one α-glucosidase from Oryza sativa (rAGL) was recombinantly produced in Pichia pastoris GS115 and used for biosynthesis of AA-2G with few intermediates and byproducts. The extracellular rAGL reached 9.11 U/mL after fed-batch cultivation for 102 h in a 5-L fermenter. The specific activity of purified rAGL is 49.83 U/mg at 37 °C and pH 4.0. The optimal temperature of rAGL was 65 °C, and it was stable below 55 °C. rAGL was active over the range of pH 3.0–7.0, with the maximal activity at pH 4.0. Under the condition of 37 °C , pH 4.0, equimolar maltose and AA·Na, 8.7±0.4 g/L of AA-2G was synthesized by rAGL. These studies lay the basis for the industrial application of recombinant α-glucosidase. Keywords: α-Glucosidase; Oryza sativa; 2-O-α-D-glucopyranosyl-L-ascorbic acid; Transglycosylation; Pichia pastoris


Author(s):  
Selvaraj Alagu Lakshmi ◽  
RajaMohamed Beema Shafreen ◽  
Kannan Balaji ◽  
Kalibulla Syed Ibrahim ◽  
Sugathan Shiburaj ◽  
...  

2019 ◽  
Vol 35 (4) ◽  
pp. 33-41
Author(s):  
L.N. Borshchevskaya ◽  
A.N. Kalinina ◽  
N.V. Bulushova ◽  
S.P. Syneoky ◽  
S.P. Voronin ◽  
...  

A DNA sequence from Kosakonia sacchari that according to automated computer analysis is believed to correspond to a gene for histidine acid phytase has been selected from the GenBank database. The sequence was optimized for codon composition, synthesized, cloned and expressed in Pichia pastoris. Main characteristics of the purified recombinant enzyme were determined. It was established that the values of pH=4.5 and temperature of 50 °C are optimal for the phytase functioning. The values of specific activity, Michaelis constant (Km) and maximum reaction rate (Vmax) with phytate as a substrate were 1470 U/mg, 193 uM and 2167 umol/(min ∙ mg), respectively. It was shown that the enzyme was characterized by a wide range of working pH. Therefore, the properties of a new recombinant phytase allow us to consider it as a high-potential enzyme for agrobiotechnology. histidine acid phosphatases, Kosakonia sacchari phytase, Pichia pastoris The work was financially supported by the Ministry of Education and Science of Russian Federation (Unique Project Identifier RFMEFI57917X0145) and was carried out using the Multipurpose Scientific Installation of National Bio-resource Center «All-Russian Collection of Industrial Microorganisms», NRC «Kurchatov Institute» - GOSNIIGENETIKA.


Sign in / Sign up

Export Citation Format

Share Document