scholarly journals Expression Profile Analysis Identifies Key Genes as Prognostic Markers for Metastasis of Osteosarcoma

2020 ◽  
Author(s):  
Xiaoqing Guan ◽  
Zhiyuan Guan ◽  
Jiafu Ji ◽  
Chunli Song

Abstract Background : Osteosarcoma (OS) is the most common malignant tumor of bone which was featured with osteoid or immature bone produced by the malignant cells, and biomarkers are urgently needed to identify patients with this aggressive disease. Methods : We downloaded gene expression profiles from Gene Expression Omnibus (GEO) and The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) datasets for OS, respectively, and performed weighted gene co-expression network analysis (WGCNA) to identify the key module. Whereafter, functional annotation and Gene Set Enrichment Analysis (GSEA) demonstrated the relationships between target genes and OS. Results : In this study, we discovered four key genes – ALOX5AP, HLA-DMB, HLA-DRA and SPINT2 as new prognostic markers and confirmed their relationship with OS metastasis in the validation set. Conclusions : Overall, our work may shed light on the roles of ALOX5AP, HLA-DMB, HLA-DRA and SPINT2, thus providing valuable clues to investigate the metastasis of OS and corroborating the potential clinical application value of the 4-gene signature to some extent.

2021 ◽  
Author(s):  
Gang Chen ◽  
Mingwei Yu ◽  
Jianqiao Cao ◽  
Huishan Zhao ◽  
Yuanping Dai ◽  
...  

Abstract Background: Breast cancer (BC) is a malignancy with a high incidence among women in the world, and it is very urgent to identify significant biomarkers and molecular therapy methods.Methods: Total 58 normal tissues and 203 cancer tissues were collected from three Gene Expression Omnibus (GEO) gene expression profiles, and the differential expressed genes (DEGs) were identified. Subsequently, the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway were analyzed. Additionally, hub genes were screened by constructing a protein-protein interaction (PPI) network. Then, we explored the prognostic values and molecular mechanism of these hub genes Kaplan-Meier (KM) curve and Gene Set Enrichment Analysis (GSEA). Results: 42 up-regulated and 82 down-regulated DEGs were screened out from GEO datasets. GO and KEGG pathway analysis revealed that DEGs were mainly related to cell cycles and cell proliferation. Furthermore, 12 hub genes (FN1, AURKA, CCNB1, BUB1B, PRC1, TPX2, NUSAP1, TOP2A, KIF20A, KIF2C, RRM2, ASPM) with a high degree of genes were selected, among which, 11 hub gene were significantly correlated with the prognosis of patients with BC. From GSEA reviewed correlated with KEGG_CELL_CYCLE and HALLMARK_P53_PATHWAY. Conclusion: this study identified 11 key genes as BC potential prognosis biomarkers on the basis of integrated bioinformatics analysis. This finding will improve our knowledge of the BC progress and mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhiqiang Wang ◽  
Zhongjun Ding ◽  
Yan Guan ◽  
Chunhui Liu ◽  
Linjun Wang ◽  
...  

Background. The molecular mechanism of nonobstructive azoospermia (NOA) remains unclear. The aim of this study was to identify gene expression changes in NOA patients and to explore potential biomarkers and therapeutic targets. Methods. The gene expression profiles of GSE45885 and GSE145467 were collected from the Gene Expression Omnibus (GEO) database, and the differences between NOA and normal spermatogenesis were analyzed. Enrichment analysis was performed to explore biological functions for common differentially expressed genes (DEGs) in GSE45885 and GSE145467. Coexpression analysis of DEGs in GSE45885 was performed, and two modules with the highest correlation with NOA were screened. Key genes were then screened from the intersection genes of the two modules and common DEGs and PPI network. The expression of key genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) experiments. Finally, through miRTarBase, miRDB, and RAID, the miRNAs were predicted to regulate key genes, respectively. Results. A total of 345 common DEGs were identified and they were mainly related to spermatogenesis, insulin signaling pathway. Coexpression analysis of DEGs in GSE45885 yielded eight modules; MEblack and MEturquoise had the highest correlation with NOA. Six genes in MEturquoise and RNF141 in MEblack were identified as key genes. qRT-PCR experiments validated the differential expression of key genes between NOA and control. Furthermore, RNF141 was regulated by the largest number of miRNAs. Conclusion. Our findings suggest that the significant change expression of key genes may be potential markers and therapeutic targets of NOA and may have some impact on the development of NOA.


2008 ◽  
Vol 36 (04) ◽  
pp. 783-797 ◽  
Author(s):  
Wen-Yu Cheng ◽  
Shih-Lu Wu ◽  
Chien-Yun Hsiang ◽  
Chia-Cheng Li ◽  
Tung-Yuan Lai ◽  
...  

Traditional Chinese medicine (TCM) has been used for thousands of years. Most Chinese herbal formulae consist of several herbal components and have been used to treat various diseases. However, the mechanisms of most formulae and the relationship between formulae and their components remain to be elucidated. Here we analyzed the putative mechanism of San-Huang-Xie-Xin-Tang (SHXXT) and defined the relationship between SHXXT and its herbal components by microarray technique. HepG2 cells were treated with SHXXT or its components and the gene expression profiles were analyzed by DNA microarray. Gene set enrichment analysis indicated that SHXXT and its components displayed a unique anti-proliferation pattern via p53 signaling, p53 activated, and DNA damage signaling pathways in HepG2 cells. Network analysis showed that most genes were regulated by one molecule, p53. In addition, hierarchical clustering analysis showed that Rhizoma Coptis shared a similar gene expression profile with SHXXT. These findings may explain why Rhizoma Coptis is the principle herb that exerts the major effect in the herbal formula, SHXXT. Moreover, this is the first report to reveal the relationship between formulae and their herbal components in TCM by microarray and bioinformatics tools.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


2021 ◽  
Author(s):  
Lingyu Zhang ◽  
Yu Li ◽  
Yibei Dai ◽  
Danhua Wang ◽  
Xuchu Wang ◽  
...  

Abstract Metabolic pattern reconstruction is an important element in tumor progression. The metabolism of tumor cells is characterized by the abnormal increase of anaerobic glycolysis, regardless of the higher oxygen concentration, resulting in a large accumulation of energy from glucose sources, and contributes to rapid cell proliferation and tumor growth which is further referenced as the Warburg effect. We tried to reconstruct the metabolic pattern in the progression of cancer to screen which genetic changes are specific in cancer cells. A total of 12 common types of solid tumors were enrolled in the prospective study. Gene set enrichment analysis (GSEA) was implemented to analyze 9 glycolysis-related gene sets, which are closely related to the glycolysis process. Univariate and multivariate analyses were used to identify independent prognostic variables for the construction of a nomogram based on clinicopathological characteristics and a glycolysis-related gene prognostic index (GRGPI). The prognostic model based on glycolysis genes has the highest area under the curve (AUC) in LIHC (Liver hepatocellular carcinoma). 8-gene signatures (AURKA, CDK1, CENPA, DEPDC1, HMMR, KIF20A, PFKFB4, STMN1) were related to overall survival (OS) and recurrence-free survival (RFS). Further analysis demonstrates that the prediction model can accurately distinguish between high- and low-risk cancer patients among patients in different clusters in LIHC. A nomogram with a well-fitted calibration curve based on gene expression profiles and clinical characteristics improves discrimination in internal and external cohorts. Furthermore, the altering expression of metabolic genes related to glycolysis may contribute to the reconstruction of the tumor-related microenvironment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jia-qi Wu ◽  
Lin-bo Mao ◽  
Ling-feng Liu ◽  
Yong-mei Li ◽  
Jian Wu ◽  
...  

Abstract Background The purpose of present study was to identify the differentially expressed genes (DEGs) associated with BMP-9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) by using bioinformatics methods. Methods Gene expression profiles of BMP-9-induced MSCs were compared between with GFP-induced MSCs and BMP-9-induced MSCs. GSE48882 containing two groups of gene expression profiles, 3 GFP-induced MSC samples and 3 from BMP-9-induced MSCs, was downloaded from the Gene Expression Omnibus (GEO) database. Then, DEGs were clustered based on functions and signaling pathways with significant enrichment analysis. Pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated that the identified DEGs were potentially involved in cytoplasm, nucleus, and extracellular exosome signaling pathway. Results A total of 1967 DEGs (1029 upregulated and 938 downregulated) were identified from GSE48882 datasets. R/Bioconductor package limma was used to identify the DEGs. Further analysis revealed that there were 35 common DEGs observed between the samples. GO function and KEGG pathway enrichment analysis, among which endoplasmic reticulum, protein export, RNA transport, and apoptosis was the most significant dysregulated pathway. The result of protein-protein interaction (PPI) network modules demonstrated that the Hspa5, P4hb, Sec61a1, Smarca2, Pdia3, Dnajc3, Hyou1, Smad7, Derl1, and Surf4 were the high-degree hub nodes. Conclusion Taken above, using integrated bioinformatical analysis, we have identified DEGs candidate genes and pathways in BMP-9 induced MSCs, which could improve our understanding of the key genes and pathways for BMP-9-induced osteogenic of MSCs.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Ellen K. Kendall ◽  
Manishkumar S. Patel ◽  
Sarah Ondrejka ◽  
Agrima Mian ◽  
Yazeed Sawalha ◽  
...  

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. While 60% of DLBCL patients achieve complete remission with frontline therapy, relapsed/refractory (R/R) DLBCL patients have a poor prognosis with median overall survival below one year, necessitating investigation into the biological principles that distinguish cured from R/R DLBCL. Recent analyses have identified unfavorable molecular signatures when accounting for gene expression, copy number alterations and mutational profiles in R/R DLBCL. However, an integrative analysis of the relationship between epigenetic and transcriptomic changes has yet to be described. In this study, we compared baseline methylation and gene expression profiles of DLBCL patients with dichotomized clinical outcomes. Methods: Diagnostic DLBCL biopsies were obtained from two patient cohorts: patients who relapsed or were refractory following chemoimmunotherapy ("R/R"), and patients who entered durable clinical remission following therapy ("cured"). The median age for R/R and cured cohorts were 62 (range 35-86) years vs. 64 (range 28-83) years (P= 0.27). High-intermediate or high IPI scores were present in 14 vs. 6 patients (P= 0.08) in the R/R and cured cohorts, respectively. All patients were treated with frontline R-CHOP or R-EPOCH. DNA and RNA were extracted simultaneously from formalin-fixed, paraffin embedded biopsy samples. An Illumina 850k Methylation Array was used to identify DNA methylation levels in 29 R/R patients and 20 cured patients. RNA sequencing was performed on 9 R/R patients and 7 cured patients at diagnosis using Illumina HiSeq4000. Differentially methylated probes were identified using the DMRcate package, and differentially expressed genes were identified using the DESeq2 package. Gene set enrichment analysis was performed using canonical pathway gene sets from MSigDB. Results: At the time of diagnosis, we found significant epigenetic and transcriptomic differences between cured and R/R patients. Comparing cured to R/R samples, there were 8,159 differentially methylated probes (FDR&lt;0.05). Differentially methylated regions between R/R and cured cohorts overlap with genes previously identified as mutation hotspots in DLBCL. Upon comparing transcriptomic profiles between R/R and cured, 267 genes were found to be differentially expressed (Log2FC&gt;|1| and FDR&lt;0.05). Gene set enrichment analysis revealed gene sets related to cell cycle, membrane trafficking, Rho and Rab family GTPase function, and transcriptional regulation were upregulated in the R/R samples. Gene sets related to innate immune signaling, Type I and II interferon signaling, fatty acid and carbohydrate metabolism were upregulated in the cured samples. To identify genes likely to be regulated by specific changes in methylation, we selected genes that were both differentially expressed and differentially methylated between the R/R and cured cohorts. In the R/R samples, 13 genes (ARMC5, ARRDC1, C12orf57, CCSER1, D2HGDH, DUOX2, FAM189B, FKBP2, KLF5, MFSD10, NEK8, NT5C, and WDR18) were significantly hypermethylated and underexpressed when compared to cured specimens, suggesting that epigenetic silencing of these genes is associated with lack of response to chemoimmunotherapy. In contrast, 12 genes (ATP2B1, C15orf41, FAM102B, FAM3C, FHOD3, FYTTD1, GPR180, KIAA1841, LRMP, MEF2A, RRAS2, and TPD52) were significantly hypermethylated and underexpressed in cured patients, suggesting that epigenetic silencing of these genes is favorable for treatment response. Many of these epigenetically modified genes have been previously implicated in cancer biology, including roles in NOTCH signaling, chromosomal instability, and biomarkers of prognosis. Conclusions: This is the first integrative epigenetic and transcriptomic analysis of diagnostic biopsies from cured and R/R DLBCL patients following chemoimmunotherapy. At the time of diagnosis, both the methylation and gene expression profiles significantly differ between patients that enter durable remission as opposed to those who are R/R to therapy. Soon, the hypomethylating agent CC-486 (i.e. oral azacitidine) will be explored in combination with mini-R-CHOP for older DLBCL patients in whom DNA methylation is likely increased. These data support the use of hypomethylating agents to potentially restore sensitivity of DLBCL to chemoimmunotherapy. Disclosures Hsi: Eli Lilly: Research Funding; Abbvie: Research Funding; Miltenyi: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; CytomX: Consultancy, Honoraria. Hill:Celgene: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria; Kite, a Gilead Company: Consultancy, Honoraria, Research Funding; AstraZenica: Consultancy, Honoraria, Research Funding; Pharmacyclics: Consultancy, Honoraria, Research Funding; Takeda: Research Funding; Beigene: Consultancy, Honoraria, Research Funding; Genentech: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110166
Author(s):  
Hanxu Guo ◽  
Zhichao Zhang ◽  
Yuhang Wang ◽  
Sheng Xue

Objective Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study aimed to use bioinformatics to screen for core genes and biological pathways related to PCa. Methods The GSE5957 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were constructed by R language. Furthermore, protein–protein interaction (PPI) networks were generated to predict core genes. The expression levels of core genes were examined in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool was used to study the co-expression and prognostic factors of the core genes. Finally, the core genes of signaling pathways were determined using gene set enrichment analysis (GSEA). Results Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24 core genes have significant association with carcinogenesis and development . LONRF1, CDK1, RPS18, GNB2L1 ( RACK1), RPL30, and SEC61A1 directly related to the recurrence and prognosis of PCa. Conclusions This study identified the core genes and pathways in PCa and provides candidate targets for diagnosis, prognosis, and treatment.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4158-4170 ◽  
Author(s):  
Kartik Shankar ◽  
Ying Zhong ◽  
Ping Kang ◽  
Franchesca Lau ◽  
Michael L. Blackburn ◽  
...  

Maternal obesity at conception increases the risk of offspring obesity, thus propagating an intergenerational vicious cycle. Male offspring born to obese dams are hyperresponsive to high fat-diets, gaining greater body weight, fat mass, and additional metabolic sequelae compared to lean controls. In this report, we identify the impact of maternal obesity before conception, on the embryo, and intrauterine milieu during the periimplantation period. We conducted global transcriptomic profiling in the uterus and periimplantation blastocyst, gene/protein expression analyses of inflammatory pathways in conjunction with endocrine and metabolic characterization in the dams at implantation. Uterine gene expression profiles of lean and obese dams revealed distinct signatures for genes regulating inflammation and lipid metabolism. Both pathway and gene-set enrichment analysis revealed uterine nuclear factor-κB and c-Jun N-terminal kinase signaling to be up-regulated in the uterus of obese dams, which was confirmed via immunoblotting. Obese uteri also evidenced an inflammatory secretome with higher chemokine mRNA abundance (CCL2, CCL5, CCL7, and CxCL10) and related regulators (TLR2, CD14, and Ccr1). Increased inflammation in the uterus was associated with ectopic lipid accumulation and expression of lipid metabolic genes. Gene expression in sex-identified male periimplantation blastocyst at day postcoitum 4.5 was clearly influenced by maternal obesity (359 transcripts, ±1.4-fold), including changes in developmental and epigenetic regulators. Akin to the uterus, nuclear factor-κB-regulated proinflammatory genes (CCL4 and CCL5) increased and expression of antioxidant (GPx3) and mitochondrial (TFAM and NRF1) genes decreased in the obese embryos. Our results suggest that ectopic lipid and inflammation may link maternal obesity to increased predisposition of offspring to obesity later in life.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10468
Author(s):  
Kai Zhang ◽  
Kuikui Jiang ◽  
Ruoxi Hong ◽  
Fei Xu ◽  
Wen Xia ◽  
...  

Background Tamoxifen resistance in breast cancer is an unsolved problem in clinical practice. The aim of this study was to determine the potential mechanisms of tamoxifen resistance through bioinformatics analysis. Methods Gene expression profiles of tamoxifen-resistant MCF-7/TR and MCF-7 cells were acquired from the Gene Expression Omnibus dataset GSE26459, and differentially expressed genes (DEGs) were detected with R software. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses using Database for Annotation, Visualization and Integrated Discovery. A protein–protein interaction (PPI) network was generated, and we analyzed hub genes in the network with the Search Tool for the Retrieval of Interacting Genes database. Finally, we used siRNAs to silence the target genes and conducted the MTS assay. Results We identified 865 DEGs, 399 of which were upregulated. GO analysis indicated that most genes are related to telomere organization, extracellular exosomes, and binding-related items for protein heterodimerization. PPI network construction revealed that the top 10 hub genes—ACLY, HSPD1, PFAS, GART, TXN, HSPH1, HSPE1, IRAS, TRAP1, and ATIC—might be associated with tamoxifen resistance. Consistently, RT-qPCR analysis indicated that the expression of these 10 genes was increased in MCF-7/TR cells comparing with MCF-7 cells. Four hub genes (TXN, HSPD1, HSPH1 and ATIC) were related to overall survival in patients who accepted tamoxifen. In addition, knockdown of HSPH1 by siRNA may lead to reduced growth of MCF-7/TR cell with a trend close to significance (P = 0.07), indicating that upregulation of HSPH1 may play a role in tamoxifen resistance. Conclusion This study revealed a number of critical hub genes that might serve as therapeutic targets in breast cancer resistant to tamoxifen and provided potential directions for uncovering the mechanisms of tamoxifen resistance.


Sign in / Sign up

Export Citation Format

Share Document