Sleep Deprivation Induces Neuroinflammation and Depressive-like Behaviors by Impairing the Regulation of Circadian Clock Genes Expression in Rats

2020 ◽  
Author(s):  
Chen Xing ◽  
Yanzhao Zhou ◽  
Huan Xu ◽  
Mengnan Ding ◽  
Yifan Zhang ◽  
...  

Abstract Background: Sleep loss leads to a spectrum of mood disorders such as anxiety, cognitive dysfunction and motor coordination impairment in many individuals. However, the underlying mechanisms are largely unknown. Methods: In this study, we examined the effects of sleep deprivation (SD) on depression and the mechanism by subjecting rats to a slowly rotating platform for 3 days to mimic the process of sleep loss. Sleep-deprived animals were tested behaviorally for anxiety- and depressive-like behaviors. We further studied the effects of SD on hypothalamic-pituitary-adrenal (HPA) axis activity, and at the end of the experiment, brains were collected to measure the circadian clock genes expression in the hypothalamus, glial cell activation and inflammatory cytokine alterations. Results: Our results indicated that SD for 3 days resulted in anxiety- and depressive-like behaviors. SD exaggerated cortisol response to HPA axis, significantly altered the mRNA profile of circadian clock genes, and induced neuroinflammation by increasing the expression of glial cell markers, including the microglial marker ionized calcium-binding adapter molecule 1 (Iba1) and the astroglial marker glial fibrillary acidic protein (GFAP). The expression of M1 and M2 microglial markers (Arg-1 and CD206, respectively) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were increased in the brain. Conclusion: These results indicated that SD for 3 days induced anxiety- and depression-like behaviors in rats by impairing the regulation of circadian clock genes and inducing neuroinflammation, ultimately resulting in brain injury.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4613-4613
Author(s):  
Ming-Yu Yang ◽  
Pai-Mei Lin ◽  
Jui-Feng Hsu ◽  
Wen-Chi Yang ◽  
Yi-Chang Liu ◽  
...  

Abstract Abstract 4613 Circadian rhythms regulate various functions of human body and disruption of circadian rhythm has been associated with cancer development and tumor progression. Circadian clock genes use transcriptional-translational feedback loops to control circadian rhythms. Many transcriptional regulators are histone acetyltransferases (HAT) or histone deacetylases (HDAC). As clock function and integration of inputs rely on transcriptional regulation, it is possible that chromatin is remodeled during circadian cycles and in response to signals that regulate the clock. SIRT1 (sirtuin 1) is a HDAC that has recently been identified as a crucial modulator of the circadian clock machinery. To date, at least 7 SIRT genes (SIRT1–7) have been identified. In our previous report we have demonstrated the daily expression patterns of PER1, PER2, PER3, CRY1, CRY2, and CKIe in peripheral blood (PB) of healthy individuals were abolished in chronic myeloid leukemia (CML) patients and partial recoveries of daily patterns were observed in CML patients with complete cytogenetic response (CCyR) and major molecular response (MMR) post-imatinib treatment [J Biol Rhythms 2011]. In this study we further investigated the expression profiles of the 7 SIRT genes (SIRT1–7) in PB total leukocytes from 49 CML and 22 healthy volunteers. Collection of PB was carried out at four time points: 2000 h, 0200 h, 0800 h, and 1400 h, respectively. In PB total leukocytes of healthy individuals, the daily pattern of SIRT1 (p < 0.01) and SIRT5 (p < 0.05) expression level peaked at 0200 h, and SIRT2 (p < 0.01) peaked at 0800 h. Daily pattern expression of these 3 genes was abolished in newly diagnosed pre-imatinib mesylate treated and blast crisis-phase CML patients. Partial daily patterns of gene expression recoveries were observed in CML patients with CCyR and MMR. In some serial monitored individual patients, the recoveries of oscillations of SIRT1, 2, and 5 genes expression accompanied with the disappearance of BCR-ABL transcripts were also noted. The expression of SIRT3, 6, and 7 did not show a time-dependent variation among the healthy and CML patients. SIRT4 expression was undetectable both in the healthy and CML patients. Updated in vitro study results of the regulation of SIRT1, 2, and 5 genes on circadian clock genes expression will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Luíza L. B. Dantas ◽  
Cristiane P. G. Calixto ◽  
Maira M. Dourado ◽  
Monalisa S. Carneiro ◽  
John W. S. Brown ◽  
...  

AbstractAlternative Splicing (AS) is a mechanism that generates different mature transcripts from precursor mRNAs (pre-mRNAs) of the same gene. In plants, a wide range of physiological and metabolic events are related to AS, as well as fast responses to changes in temperature. AS is present in around 60% of intron-containing genes in Arabidopsis, 46% in rice and 38% in maize and it is widespread among the circadian clock genes. Little is known about how AS influences the circadian clock of C4 plants, like commercial sugarcane, a C4 crop with a complex hybrid genome. This work aims to test if the daily dynamics of AS forms of circadian clock genes are regulated by environmental factors, such as temperature, in the field. A systematic search for AS in five sugarcane clock genes, ScLHY, ScPRR37, ScPRR73, ScPRR95 and ScTOC1 using different organs of sugarcane sampled during winter, with 4 months old plants, and during summer, with 9 months old plants, revealed temperature- and organ-dependent expression of at least one alternatively spliced isoform in all genes. Expression of AS isoforms varied according to the season. Our results suggest that AS events in circadian clock genes are correlated with temperature.


2016 ◽  
Vol 91 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Feng Chu ◽  
Jian-Feng Qiu ◽  
Hui Tao ◽  
Xue Li ◽  
Mei-Ying Shu ◽  
...  

2015 ◽  
Vol 100 (9) ◽  
pp. E1255-E1261 ◽  
Author(s):  
Jonathan Cedernaes ◽  
Megan E. Osler ◽  
Sarah Voisin ◽  
Jan-Erik Broman ◽  
Heike Vogel ◽  
...  

Context: Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. Objective: This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. Intervention: In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230–0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. Main Outcome Measures: In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (−18%; P = .033) and CRY1 (−22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Conclusions: Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.


2015 ◽  
Vol 58 (3) ◽  
pp. 251-261 ◽  
Author(s):  
Talita da Silva Mendes de Farias ◽  
Ariclécio Cunha de Oliveira ◽  
Sandra Andreotti ◽  
Fernanda Gaspar do Amaral ◽  
Patrícia Chimin ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0233508
Author(s):  
Jiangguo Zhang ◽  
Hong Lv ◽  
Mingzhu Ji ◽  
Zhimo Wang ◽  
Wenqing Wu

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


Sign in / Sign up

Export Citation Format

Share Document