scholarly journals Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice.

2020 ◽  
Author(s):  
Timothy M Moore ◽  
Amanda Lin ◽  
Alexander R Strumwasser ◽  
Kevin Cory ◽  
Kate Whitney ◽  
...  

Abstract Background:Muscular dystrophies are a diverse family of genetic and hereditary disorders manifested primarily by the progressive wasting of skeletal muscle. Duchenne muscular dystrophy (DMD), the most common muscular dystrophy, has no cure, with most treatments seeking to mitigate symptoms. Emerging gene or stem cell therapies hold promise, although widespread clinical adoption may not occur for quite some time. There remains a need for alternative strategies, including drug and lifestyle combination-based therapies, and to continue furthering understanding the physiological effects of dystrophin gene mutations. Mitochondrial dysfunction is well known as a pathological feature of DMD. However, whether mitochondrial dysfunction is a cause or the consequence of DMD is not well known. We hypothesized that dystrophin deletion would lead to mitochondrial and metabolic abnormalities prior to the onset of observable muscle damage.Methods:Utilizing the commonly employed muscular dystrophy mouse model, C57BL/10ScSn-Dmdmdx/J (mdx), we sought to determine how the loss of dystrophin effects mitochondria and metabolism in both male and female mdx mice. We also treated male mdx mice with an autophagy inhibitor, leupeptin, to investigate its potentially impact on mdx pathology.Results:We detected, via electron microscopy, aberrant mitochondrial morphology, reduced cristae numbers per area of mitochondria, and large mitochondrial vacuoles from both two-week-old male and 24-week-old female mdx carrier mice, prior to the onset of visible muscle fiber damage. We systematically characterized mitochondria during disease progression starting before the onset of gross muscle fiber damage noting changes in mitochondrial DNA copy number and regulators of mitochondrial size. We further detected mild metabolic and mitochondrial impairments in female mdx carrier mice (heterozygous mdx/+) that was exacerbated with high-fat diet feeding. Lastly, we found autophagy inhibition did not improve pathology in mdx male mice.Conclusions:Our results suggest that prior to the onset of visible muscle damage, mitochondrial and metabolic abnormalities are present within the mdx mouse.

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 648
Author(s):  
Andrea L. Reid ◽  
Matthew S. Alexander

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a pathogenic disruption of the DYSTROPHIN gene that results in non-functional dystrophin protein. DMD patients experience loss of ambulation, cardiac arrhythmia, metabolic syndrome, and respiratory failure. At the molecular level, the lack of dystrophin in the muscle results in myofiber death, fibrotic infiltration, and mitochondrial dysfunction. There is no cure for DMD, although dystrophin-replacement gene therapies and exon-skipping approaches are being pursued in clinical trials. Mitochondrial dysfunction is one of the first cellular changes seen in DMD myofibers, occurring prior to muscle disease onset and progresses with disease severity. This is seen by reduced mitochondrial function, abnormal mitochondrial morphology and impaired mitophagy (degradation of damaged mitochondria). Dysfunctional mitochondria release high levels of reactive oxygen species (ROS), which can activate pro-inflammatory pathways such as IL-1β and IL-6. Impaired mitophagy in DMD results in increased inflammation and further aggravates disease pathology, evidenced by increased muscle damage and increased fibrosis. This review will focus on the critical interplay between mitophagy and inflammation in Duchenne muscular dystrophy as a pathological mechanism, as well as describe both candidate and established therapeutic targets that regulate these pathways.


2021 ◽  
Vol 22 (11) ◽  
pp. 5851
Author(s):  
Takehito Sugasawa ◽  
Seiko Ono ◽  
Masato Yonamine ◽  
Shin-ichiro Fujita ◽  
Yuki Matsumoto ◽  
...  

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.


2020 ◽  
Vol 22 (1) ◽  
pp. 91
Author(s):  
Vanina Romanello

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


2017 ◽  
Vol 27 ◽  
pp. S203
Author(s):  
T. Doki ◽  
S. Yamashita ◽  
F. Wei ◽  
X. Zhang ◽  
Z. Zhang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Honglei Guo ◽  
Xiao Bi ◽  
Ping Zhou ◽  
Shijian Zhu ◽  
Wei Ding

Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Qing-Rui Wu ◽  
Dan-Lin Zheng ◽  
Pei-Ming Liu ◽  
Hui Yang ◽  
Lu-An Li ◽  
...  

AbstractMitochondrial dysfunction and impaired Ca2+ handling are involved in the development of diabetic cardiomyopathy (DCM). Dynamic relative protein 1 (Drp1) regulates mitochondrial fission by changing its level of phosphorylation, and the Orai1 (Ca2+ release-activated calcium channel protein 1) calcium channel is important for the increase in Ca2+ entry into cardiomyocytes. We aimed to explore the mechanism of Drp1 and Orai1 in cardiomyocyte hypertrophy caused by high glucose (HG). We found that Zucker diabetic fat rats induced by administration of a high-fat diet develop cardiac hypertrophy and impaired cardiac function, accompanied by the activation of mitochondrial dynamics and calcium handling pathway-related proteins. Moreover, HG induces cardiomyocyte hypertrophy, accompanied by abnormal mitochondrial morphology and function, and increased Orai1-mediated Ca2+ influx. Mechanistically, the Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) prevents cardiomyocyte hypertrophy induced by HG by reducing phosphorylation of Drp1 at serine 616 (S616) and increasing phosphorylation at S637. Inhibition of Orai1 with single guide RNA (sgOrai1) or an inhibitor (BTP2) not only suppressed Drp1 activity and calmodulin-binding catalytic subunit A (CnA) and phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) expression but also alleviated mitochondrial dysfunction and cardiomyocyte hypertrophy caused by HG. In addition, the CnA inhibitor cyclosporin A and p-ERK1/2 inhibitor U0126 improved HG-induced cardiomyocyte hypertrophy by promoting and inhibiting phosphorylation of Drp1 at S637 and S616, respectively. In summary, we identified Drp1 as a downstream target of Orai1-mediated Ca2+ entry, via activation by p-ERK1/2-mediated phosphorylation at S616 or CnA-mediated dephosphorylation at S637 in DCM. Thus, the Orai1–Drp1 axis is a novel target for treating DCM.


2021 ◽  
Vol 13 (588) ◽  
pp. eabb0319
Author(s):  
Peiling Luan ◽  
Davide D’Amico ◽  
Pénélope A. Andreux ◽  
Pirkka-Pekka Laurila ◽  
Martin Wohlwend ◽  
...  

Duchenne muscular dystrophy (DMD) is the most common muscular dystrophy, and despite advances in genetic and pharmacological disease-modifying treatments, its management remains a major challenge. Mitochondrial dysfunction contributes to DMD, yet the mechanisms by which this occurs remain elusive. Our data in experimental models and patients with DMD show that reduced expression of genes involved in mitochondrial autophagy, or mitophagy, contributes to mitochondrial dysfunction. Mitophagy markers were reduced in skeletal muscle and in muscle stem cells (MuSCs) of a mouse model of DMD. Administration of the mitophagy activator urolithin A (UA) rescued mitophagy in DMD worms and mice and in primary myoblasts from patients with DMD, increased skeletal muscle respiratory capacity, and improved MuSCs’ regenerative ability, resulting in the recovery of muscle function and increased survival in DMD mouse models. These data indicate that restoration of mitophagy alleviates symptoms of DMD and suggest that UA may have potential therapeutic applications for muscular dystrophies.


2002 ◽  
Vol 282 (6) ◽  
pp. F981-F990 ◽  
Author(s):  
Luis Michea ◽  
Christian Combs ◽  
Peter Andrews ◽  
Natalia Dmitrieva ◽  
Maurice B. Burg

Raising osmolality to 700 mosmol/kgH2O by the addition of NaCl rapidly kills most murine inner renal medullary collecting duct cells (mIMCD3), but they survive at 500 mosmol/kgH2O. At 300 and 500 mosmol/kgH2O, NADH autofluorescence is present in a mitochondria-associated, punctate perinuclear pattern. Within 45 s to 30 min at 700 mosmol/kgH2O, the autofluorescence spreads diffusely throughout the cell. This correlates with mitochondrial membrane depolarization, measured as decreased tetramethylrhodamine methyl ester perchlorate (TMRM) fluorescence. Mitochondrial dysfunction should increase the cellular ADP/ATP ratio. In agreement, this ratio increases within 1–6 h. Mitochondrial morphology (transmission electron microscopy) is unaffected, but nuclear hypercondensation becomes evident. Progressive apoptosis occurs beginning 1 h after osmolality is raised to 700, but not to 500, mosmol/kgH2O. General caspase activity and caspase-9 activity increase only after 6 h at 700 mosmol/kgH2O. The mitochondrial Bcl-2/Bax ratio decreases within 1–3 h, but no cytochrome c release is evident. The mitochondria contain little p53 at any osmolality. Adding urea to 700 mosmol/kgH2O does not change NADH or TMRM fluorescence. We conclude that extreme acute hypertonicity causes a mitochondrial dysfunction involved in the initiation of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document