scholarly journals Endothelial  colony-forming cells reduced the lung injury induced by cardiopulmonary bypass in rats

2020 ◽  
Author(s):  
Haibin Sun ◽  
Xiaoqing Zhao ◽  
Qihang Tai ◽  
Guangxiao Xu ◽  
Yingnan Ju ◽  
...  

Abstract Background: Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. Methods: Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pretreated ECFCs. After 24 hours of CPB, pulmonary capillary permeability, including the PaO 2 /FiO 2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight, was evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. Results: After CPB, all the data deteriorated compared with those obtained in the S group (sham vs CPB vs CPB/ECFC vs CPB/ECFC/L-NIO: histological score: 1.62±0.51 vs 5.37±0.91 vs 3.37±0.89 vs 4.37±0.74; PaO 2 /FiO 2 : 389±12 vs 233±36 vs 338±28 vs 287±30; wet/dry weight: 3.11±0.32 vs 6.71±0.73 vs 4.66±0.55 vs 5.52±0.57; protein levels: 134±22 vs 442±99 vs 225±41 vs 337±53, all P<0.05). Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO 2 /FiO 2 . Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Compared with CPB/ECFC group, all the indicators were partly reversed by the L-NIO. Conclusions: ECFCs significantly reduced lung injury induced by inflammation after CPB.

2020 ◽  
Author(s):  
haibin sun ◽  
Xiaoqing Zhao ◽  
Qihang Tai ◽  
Guangxiao Xu ◽  
Yingnan Ju ◽  
...  

Abstract Background Cardiopulmonary bypass (CPB) results in severe lung injury via inflammation and endothelial injury. The aim of this study was to evaluate the effect of endothelial colony-forming cells (ECFCs) on lung injury in rats subjected to CPB. Methods Thirty-two rats were randomized into the sham, CPB, CPB/ECFC and CPB/ECFC/L-NIO groups. The rats in the sham group received anaesthesia, and the rats in the other groups received CPB. The rats also received PBS, ECFCs and L-NIO-pretreated ECFCs. After 24 hours of CPB, pulmonary capillary permeability, including the PaO 2 /FiO 2 ratio, protein levels in bronchoalveolar lavage fluid (BALF) and lung tissue wet/dry weight, was evaluated. The cell numbers and cytokines in BALF and peripheral blood were tested. Endothelial injury, lung histological injury and apoptosis were assessed. The oxidative stress response and apoptosis-related proteins were analysed. Results After CPB, all the data deteriorated compared with those obtained in the S group. Compared to the CPB treatment, ECFCs significantly improved pulmonary capillary permeability and PaO 2 /FiO 2 . Similarly, ECFCs also decreased the inflammatory cell number and pro-inflammatory factors in BALF and peripheral blood, as well as the oxidative stress response in the lung tissue. ECFCs reduced the lung histological injury score and apoptosis and regulated apoptosis-related proteins in the lung tissue. Conclusions ECFCs significantly reduced lung injury induced by inflammation after CPB.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Qi Wang ◽  
Guang-xiao Xu ◽  
Qi-hang Tai ◽  
Yan Wang

Ventilator-induced lung injury (VILI) is a severe and inevitable complication in patients who require mechanical ventilation (MV) for respiratory support. Lipoxin A4 is an endogenous anti-inflammatory and antioxidant mediator. The present study determined the effects of lipoxin A4 on VILI. Twenty-four rats were randomized to the sham, VILI, and lipoxin A4 (LX4) groups. The rats in the VILI and LX4 groups received large-volume MV for 4 hours to simulate VILI. Capillary permeability was evaluated using the PaO2/FiO2 ratio, lung wet/dry weight ratio, and protein level in the lung. VILI-induced inflammation was assessed by measuring cytokines in serum and lung tissue, the expression and activity of NF-κB, and phosphorylated myosin light chain. The oxidative stress response, lung tissue injury, and apoptosis in lung tissue were also estimated, and the expression of apoptotic proteins was examined. MV worsened all of the indices compared to the sham group. Compared to the VILI group, the LX4 group showed significantly improved alveolar-capillary permeability (increased PaO2/FiO2 and decreased wet/dry weight ratios and protein levels), ameliorated histological injury, and reduced local and systemic inflammation (downregulated proinflammatory factors and NF-κB expression and activity). Lipoxin A4 notably inhibited the oxidative stress response and apoptosis and balanced apoptotic protein levels in lung tissue. Lipoxin A4 protects against VILI via anti-inflammatory, antioxidant, and antiapoptotic effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying-nan Ju ◽  
Qi-hang Tai ◽  
Guang-xiao Xu ◽  
Xiao-qing Zhao ◽  
Hai-bin Sun ◽  
...  

Background. The recombinant protein diannexin can inhibit platelet-mediated events, which contribute to acute respiratory distress syndrome (ARDS). Here, we investigated the effect of diannexin and its effect on heme oxygenase-1 (HO-1) in ARDS. Methods. A total of 32 rats were randomized into sham, ARDS, diannexin (D), and diannexin+HO-1 inhibitor (DH) groups. Alveolar-capillary permeability was evaluated by testing the partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio, lung wet/dry weight ratio, and protein levels in the lung. Inflammation was assessed by measuring cytokine levels in the bronchial alveolar lavage fluid (BALF) and serum and nuclear factor-κB (NF-κB) in the lung tissue. Inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and myeloperoxidase (MPO) were measured to evaluate the oxidative stress response. Lung tissue pathology and apoptosis were also evaluated. We measured HO-1 expression in the lung tissue to investigate the effect of diannexin on HO-1 in ARDS. Results. Compared with the ARDS group, diannexin improved PaO2/FiO2, lung wet/dry weight ratio, and protein levels in the BALF and decreased levels of cytokines and NF-κB in the lung and serum. Diannexin inhibited the oxidative stress response and significantly ameliorated pathological lung injury and apoptosis. The partial reversal of diannexin effects by a HO-1 inhibitor suggests that diannexin may promote HO-1 expression to ameliorate ARDS. Conclusions. We showed that diannexin can improve alveolar-capillary permeability, inhibit the oxidative stress response and inflammation, and protect against ARDS-induced lung injury and apoptosis.


2022 ◽  
Author(s):  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  
...  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.


1984 ◽  
Vol 56 (2) ◽  
pp. 489-494 ◽  
Author(s):  
J. C. Gabel ◽  
T. N. Hansen ◽  
R. E. Drake

We used a gravimetric technique to test for increased pulmonary capillary permeability after Escherichia coli endotoxin infusion in unanesthetized sheep. The sheep were chronically prepared with cannulas placed into the left atrium and pulmonary artery 1–2 wk before the experiments. We estimated pulmonary capillary pressure (Pc) as the average of pulmonary arterial and left atrial pressures, and used the modified method of Pierce to estimate the ratio of extravascular fluid weight (EVF) to blood-free dry weight. In 15 sheep we inflated a left atrial balloon to raise Pc to -10.7, 5, 10, or 15 mmHg above plasma oncotic pressure (IIc) for 3 h, then measured EVF. EVF averaged 4.0 +/- 0.2 (base line), 4.3 +/- 0.1, 4.5 +/- 0.1, and 5.1 +/- 0.5 (SD), respectively, for the four levels of Pc - IIc. We gave seven additional sheep 1 microgram/kg of E. coli endotoxin (0127:B8) and measured EVF after 3 h of stable Pc. Endotoxin increased Pc in each sheep. EVF was higher than control for the endotoxin sheep with Pc - IIc greater than -1. This finding is consistent with an increase in pulmonary capillary permeability caused by endotoxin. However, EVF was not elevated in the endotoxin sheep with Pc - IIc less than 1 mmHg. This shows that the increased permeability was insufficient to cause edema unless Pc was elevated. Thus endotoxin may cause edema by two mechanisms, 1) an increase in capillary permeability, and 2) an increase in Pc.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xu Luo ◽  
Ruimeng Liu ◽  
Zhihao Zhang ◽  
Zhugui Chen ◽  
Jian He ◽  
...  

The regulation of intracellular mitochondria degradation is mediated by mitophagy. While studies have shown that mitophagy can lead to mitochondrial dysfunction and cell damage, the role of Mdivi-1 and mitophagy remains unclear in acute lung injury (ALI) pathogenesis. In this study, we demonstrated that Mdivi-1, which is widely used as an inhibitor of mitophagy, ameliorated acute lung injury assessed by HE staining, pulmonary microvascular permeability assay, measurement of wet/dry weight (W/D) ratio, and oxygenation index (PaO2/FiO2) analysis. Then, the mitophagy related proteins were evaluated by western blot. The results indicated that LPS-induced activation of mitophagy was inhibited by Mdivi-1 treatment. In addition, we found that Mdivi-1 protected A549 cells against LPS-induced mitochondrial dysfunction. We also found that Mdivi-1 reduced pulmonary cell apoptosis in the LPS-challenged rats and protected pulmonary tissues from oxidative stress (represented by the content of superoxide dismutase, malondialdehyde and lipid peroxides in lung). Moreover, Mdivi-1 treatment ameliorated LPS-induced lung inflammatory response and cells recruitment. These findings indicate that Mdivi-1 mitigates LPS-induced apoptosis, oxidative stress, and inflammation in ALI, which may be associated with mitophagy inhibition. Thus, the inhibition of mitophagy may represent a potential therapy for treating ALI.


1995 ◽  
Vol 78 (5) ◽  
pp. 1635-1641 ◽  
Author(s):  
S. Tasaka ◽  
A. Ishizaka ◽  
T. Urano ◽  
K. Sayama ◽  
F. Sakamaki ◽  
...  

Hyperoxic lung injury is attributable to oxygen radicals produced under hyperoxic conditions. The 21-aminosteroid (AS), U-74389G, is a potent antioxidant. We examined the effect of U-74389G on lung injury in guinea pigs during exposure to 90% O2 for 48 h. We injected either vehicle or 10 mg/kg of U-74389G 30 min before the O2 exposure and injected the same dose 12, 24, and 36 h later. We performed two series of experiments after exposure. In the first series, we measured the clearance rate of 99mTc-labeled dialdehyde starch (DAS) from the lungs as an index of pulmonary epithelial damage in three experimental groups consisting of 1) control (n = 6) O2 alone (n = 6), and 3) O2 + AS (n = 6). In the second series, pulmonary endothelial injury was estimated by using 28 guinea pigs divided into four experimental groups consisting of 1) control (n = 8), 2) AS alone (n = 5), 3) O2 alone (n = 6), and 4) O2 + AS (n = 9). In the second series, we measured the wet-to-dry weight ratio (W/D) as an index of lung water and the concentration ratio of 125I-labeled albumin in lung tissue and bronchoalveolar lavage (BAL) fluid compared with plasma (T/P and BAL/P, respectively) as indexes of pulmonary endothelial damage. Cell accumulation in BAL fluid and lung tissue samples was also assessed in the second series.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 112 (7) ◽  
pp. 1184-1190 ◽  
Author(s):  
Carlos Fernando Ronchi ◽  
Jose Roberto Fioretto ◽  
Ana Lucia Anjos Ferreira ◽  
Carolina Bragiola Berchieri-Ronchi ◽  
Camila Renata Correa ◽  
...  

Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using two different strategies of mechanical ventilation. Rabbits were ventilated using either conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV). Lung injury was induced by tracheal saline infusion (30 ml/kg, 38°C). In addition, five healthy rabbits were studied for oxidative stress. Isolated lymphocytes from peripheral blood and lung tissue samples were analyzed by alkaline single cell gel electrophoresis (comet assay) to determine DNA damage. Total antioxidant performance (TAP) assay was applied to measure overall antioxidant performance in plasma and lung tissue. HFOV rabbits had similar results to healthy animals, showing significantly higher antioxidant performance and lower DNA damage compared with CMV in lung tissue and plasma. Total antioxidant performance showed a significant positive correlation ( r = 0.58; P = 0.0006) in plasma and lung tissue. In addition, comet assay presented a significant positive correlation ( r = 0.66; P = 0.007) between cells recovered from target tissue and peripheral blood. Moreover, antioxidant performance was significantly and negatively correlated with DNA damage ( r = −0.50; P = 0.002) in lung tissue. This study indicates that both TAP and comet assay identify increased oxidative stress in CMV rabbits compared with HFOV. Antioxidant performance analyzed by TAP and oxidative DNA damage by comet assay, both in plasma, reflects oxidative stress in the target tissue, which warrants further studies in humans.


Sign in / Sign up

Export Citation Format

Share Document