Attenuation of hyperoxic lung injury by the 21-aminosteroid U-74389G

1995 ◽  
Vol 78 (5) ◽  
pp. 1635-1641 ◽  
Author(s):  
S. Tasaka ◽  
A. Ishizaka ◽  
T. Urano ◽  
K. Sayama ◽  
F. Sakamaki ◽  
...  

Hyperoxic lung injury is attributable to oxygen radicals produced under hyperoxic conditions. The 21-aminosteroid (AS), U-74389G, is a potent antioxidant. We examined the effect of U-74389G on lung injury in guinea pigs during exposure to 90% O2 for 48 h. We injected either vehicle or 10 mg/kg of U-74389G 30 min before the O2 exposure and injected the same dose 12, 24, and 36 h later. We performed two series of experiments after exposure. In the first series, we measured the clearance rate of 99mTc-labeled dialdehyde starch (DAS) from the lungs as an index of pulmonary epithelial damage in three experimental groups consisting of 1) control (n = 6) O2 alone (n = 6), and 3) O2 + AS (n = 6). In the second series, pulmonary endothelial injury was estimated by using 28 guinea pigs divided into four experimental groups consisting of 1) control (n = 8), 2) AS alone (n = 5), 3) O2 alone (n = 6), and 4) O2 + AS (n = 9). In the second series, we measured the wet-to-dry weight ratio (W/D) as an index of lung water and the concentration ratio of 125I-labeled albumin in lung tissue and bronchoalveolar lavage (BAL) fluid compared with plasma (T/P and BAL/P, respectively) as indexes of pulmonary endothelial damage. Cell accumulation in BAL fluid and lung tissue samples was also assessed in the second series.(ABSTRACT TRUNCATED AT 250 WORDS)

1986 ◽  
Vol 71 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Stanley Braude ◽  
David Royston

1. The effect in the rat of salbutamol infusion (1 μg min−1 kg−1) on acid-induced lung injury has been determined. Severity of lung injury was assessed by two techniques: the pulmonary clearance of 99mTc-diethylenetriaminepenta-acetate (99mTc-DTPA) and the lung wet/dry weight ratio, giving indices of alveolar epithelial permeability and transendothelial water filtration respectively. 2. Mean half-time of clearance of 99mTc-DTPA was increased significantly in rats who had intratracheal acid-induced injury and control (saline) intravenous infusion (19.4 ± 2.6 min) compared with non-acid-treated rats (98.1 ± 7.2) (P < 0.0001). However, those animals who had intratracheal acid injury and subsequent salbutamol intravenous infusion had significantly faster clearance (11.5 ± 1.9) than the acid and control infusion group (P < 0.05). 3. Gravimetric lung water in the acid-only rats (expressed as wet/dry weight ratio) was increased significantly (6.4 ± 0.3) compared with the non-acid-treated controls (5.4 ± 0.2) (P < 0.01). Acid-treated rats who had salbutamol infused had dramatically increased lung water (10.0 ± 0.6) (P < 0.001 vs acid and control infusion). 4. Intravenous salbutamol infusion itself produced no significant difference in the results for both techniques, compared with the non-acid-treated time-course controls. 5. Infused salbutamol accentuates acid-induced lung injury in the rat. Possible factors responsible for these findings include β2-adrenergic agonist mediated inhibition of hypoxic pulmonary vasoconstriction (HPV) and a predominant β1-adrenergic agonist inotropic effect of salbutamol with resultant rise in pulmonary artery pressure.


2022 ◽  
Author(s):  
Yibin Zeng ◽  
Hongying Zhao ◽  
Tong Zhang ◽  
Chao Zhang ◽  
Yanni He ◽  
...  

Background: Punicalagin (Pun) is one of the main bioactive compounds in pomegranate peel, it possesses many properties, including antioxidant, anti-inflammation, and immunosuppressive activities. The study was aimed to investigate the protective effect and mechanisms of Pun on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice. Methods and Results: Forty-eight BALB/c male mice were used to establish ALI by intratracheal-instilled 2.4 mg/kg LPS, the mice were randomly divided into model and Pun (10, 20, 40 mg/kg) groups. The other twelve mice were intratracheal-instilled same volume of water as control. After 2 h of receiving LPS, mice were administrated drug through intraperitoneal injection. Lung index, histopathological changes, white blood cells and biomarkers in bronchoalveolar lavage fluid (BALF) were analyzed. The protein expression of total and phosphor p65, IκBα, ERK1/2, JNK and p38 in lung tissue was detected. The result showed that Pun could reduce the lung index and wet/dry weight ratio, improve lung histopathological injury. In addition, Pun decreased the inflammation cells and regulated the biomarkers in BALF. Furthermore, Pun dose-dependently reduced the phosphor protein levels of p65, IκBα, ERK1/2, JNK and p38 in lung tissue, which exhibited that the effect of Pun related to MAPKs pathway. More importantly, there is no toxicity was observed in the acute toxicity study of Pun. Conclusion: Pun improves LPS-induced ALI mainly through its anti-inflammatory properties, which is associated with NF-κB and MAPKs signaling pathways. The study implied that Pun maybe a potent agent against ALI in future clinic.


1989 ◽  
Vol 67 (6) ◽  
pp. 2432-2437 ◽  
Author(s):  
A. Ishizaka ◽  
J. R. Hatherill ◽  
H. Harada ◽  
M. Yonemaru ◽  
H. Hoffmann ◽  
...  

We administered recombinant human interleukin 2 (IL-2) to guinea pigs to investigate whether IL-2 would cause acute lung injury. In addition, we examined the effects of pentoxifylline (PTXF) on IL-2-induced acute lung injury. Three groups of animals were studied over a period of 8 h. The saline control group was injected intravenously with 2 ml of pyrogen-free saline; the IL-2 group was injected intravenously with 4 X 10(6) U/kg recombinant IL-2; and the IL-2-PTXF group was injected with a 20-mg/kg bolus of PTXF followed by a continuous infusion (6 mg.kg-1.h-1) started 60 min before injection of 4 X 10(6) U/kg IL-2. Lung water (wet-to-dry lung weight ratio), the concentration ratios of 125I-albumin in bronchoalveolar lavage (BAL) fluid and lung tissue compared with plasma (125I-albumin BAL-to-plasma, 125I-albumin lung-to-plasma), and cell counts in BAL fluid were examined. An intravenous injection of IL-2 caused an increased lung water (P less than 0.01), an increased 125I-albumin lung-to-plasma ratio (P less than 0.05), and a significant increase in the absolute number of neutrophils, lymphocytes, and macrophages in BAL fluid compared with the saline control. In contrast, the PTXF-pretreated group did not demonstrate IL-2-induced acute lung injury (lung water, 125I-albumin lung-to-plasma) or increased accumulation of neutrophils, lymphocytes, and macrophages in the BAL. These data suggest a possible role for PTXF in attenuating the side effects of IL-2.


2020 ◽  
Vol 19 (9) ◽  
pp. 1815-1819
Author(s):  
Meijiao Fu ◽  
Tong Shen ◽  
Ying Yang ◽  
Yaling Zheng ◽  
Lilin Zhong

Purpose: To investigate the effect of echinacoside (ECH) on acute lung injury (ALI) and the underlying mechanism of action.Methods: The ALI model was established through intranasal instillation of lipopolysaccharide (LPS). Lung tissue damage was determined using hematoxylin and eosin (H&E) staining and lung wet-to-dry–weight ratio. Bronchoalveolar lavage fluid (BALF) protein concentration, cell count, and cytokine level were evaluated. Western blotting was used to determine protein expression level.Results: ECH attenuated lung tissue injury and lung wet-to-dry–weight ratio in the ALI model (p < 0.01). The total protein content and number of total cells, neutrophils, and macrophages increased in BALF of mice treated with LPS, but these increases were reversed by ECH treatment (p < 0.01). The levels of TNF-α and IL-1β increased in BALF and lung tissue of LPS-treated mice; however, ECH treatment decreased these changes (p < 0.01). In addition, ECH inhibited the activation of the nuclear factor-κB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) pathway in LPS-treated mice (p < 0.01).Conclusion: Echinacoside attenuates LPS-induced ALI via inactivation of the NF-κB/NLRP3 pathway, making echinacoside a potential drug for the treatment of ALI. Keywords: Echinacoside, Acute lung injury, Lipopolysaccharide, Nuclear factor-κB, NLR family pyrin domain containing 3


2001 ◽  
Vol 281 (4) ◽  
pp. L949-L957 ◽  
Author(s):  
Carolyn E. Clayton ◽  
Martha Sue Carraway ◽  
Hagir B. Suliman ◽  
Edward D. Thalmann ◽  
Katherine N. Thalmann ◽  
...  

Because carbon monoxide (CO) has been proposed to have anti-inflammatory properties, we sought protective effects of CO in pulmonary O2 toxicity, which leads rapidly to lung inflammation and respiratory failure. Based on published studies, we hypothesized that CO protects the lung against O2 by selectively increasing expression of antioxidant enzymes, thereby decreasing oxidative injury and inflammation. Rats exposed to O2 with or without CO [50–500 parts/million (ppm)] for 60 h were compared for lung wet-to-dry weight ratio (W/D), pleural fluid volume, myeloperoxidase (MPO) activity, histology, expression of heme oxygenase-1 (HO-1), and manganese superoxide dismutase (Mn SOD) proteins. The brains were evaluated for histological evidence of damage from CO. In O2-exposed animals, lung W/D increased from 4.8 in normal rats to 6.3; however, only CO at 200 and 500 ppm decreased W/D significantly (to 5.9) during O2 exposure. Large volumes of pleural fluid accumulated in all rats, with no significant CO treatment effect. Lung MPO values increased after O2 and were not attenuated by CO treatment. CO did not enhance lung expression of oxidant-responsive proteins Mn SOD and HO-1. Animals receiving O2 and CO at 200 or 500 ppm showed significant apoptotic cell death in the cortex and hippocampus by immunochemical staining. Thus significant protection by CO against O2-induced lung injury could not be confirmed in rats, even at CO concentrations associated with apoptosis in the brain.


2020 ◽  
Vol 19 (6) ◽  
pp. 1167-1171
Author(s):  
Xiao Wang ◽  
Lei Huang ◽  
Peng Li

Purpose: To determine the effect of pristimerin on sepsis-induced lung injury, and the underlying mechanism of action.Methods: Lung injury was established in mice via induction of sepsis through cecal ligation and puncture (CLP). The effect of pristimerin was evaluated based on lung wet/dry weight and PaO2/FiO2 ratios. Lung tissue was subjected to immunohistochemical and histopathological analyses, as well as Western blotting. Furthermore, the serum levels of inflammatory mediators were determined.Results: Pristimerin reversed the altered lung wet/dry weight ratio and PaO2/FiO2 ratio in the lung, and also reduced lung injury score, relative to CLP group (p < 0.05). Moreover, it suppressed nucleocytoplasmic translocation of high mobility group protein B1 (HMGB1) in lung tissue. Serum levels of inflammatory mediators and expression levels of inducible nitric oxide synthase and nuclear factorkappaB p65 were significantly reduced by pristimerin (p < 0.05).Conclusion: Pristimerin ameliorates sepsis-induced lung injury by inhibiting HMGB1/NF-κB. Thus, this compound has a potential for clinical application in the management of lung injury. Keywords: Pristimerin, Sepsis, Lung injury, Inflammatory mediators, HMGB1


2021 ◽  
Vol 556 ◽  
pp. 39-44
Author(s):  
Mulin Liang ◽  
Hongxing Dang ◽  
Qinghe Li ◽  
Weiben Huang ◽  
Chengjun Liu

2021 ◽  
Vol 22 (11) ◽  
pp. 5533
Author(s):  
Alessio Filippo Peritore ◽  
Ramona D’Amico ◽  
Rosalba Siracusa ◽  
Marika Cordaro ◽  
Roberta Fusco ◽  
...  

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


1981 ◽  
Vol 50 (1) ◽  
pp. 102-106 ◽  
Author(s):  
P. S. Barie ◽  
T. S. Hakim ◽  
A. B. Malik

We determined the effect of pulmonary hypoperfusion on extravascular water accumulation in anesthetized dogs by occluding the left pulmonary artery for 3 h and then reperfusing it for 24 h. The lung was reperfused either at normal left atrial pressure (Pla) or during increased Pla induced by a left atrial balloon. In each case the extravascular water content-to-bloodless dry weight ratio (W/D) of the left lung was compared with that of the right lung. The W/D of the left lung of 3.26 +/- 0.49 ml/g was not significantly different from the value of 2.87 +/- 0.37 for the right lung after the reperfusion at normal Pla. However, the W/D of the left lung of 5.10 +/- 0.38 ml/g was greater (P less than 0.05) than the value of 4.42 +/- 0.34 for the right lung after reperfusion at Pla of 25 Torr. This difference could not be prevented by pretreatment with heparin, suggesting that the increase in lung water content was not due to activation of intravascular coagulation secondary to stasis occurring during the occlusion. Because the left lung was more edematous than the right one, even though both lungs had been subjected to the same increase in Pla, the results suggest that a period of pulmonary hypoperfusion causes an increase in the interstitial protein concentration.


2021 ◽  
Author(s):  
Can Jin ◽  
Shucheng Zhang ◽  
Linlin Wu ◽  
Bohan Li ◽  
Meimei Shi ◽  
...  

Abstract Rationale: It is unclear whether removing the danger-associated molecular patterns (DAMPs) of gut lymph (GL) in the rats of gut ischemia-reperfusion injury (GIRI) model may reduce the distant organ lung injury.Objective: To determine whether oXiris gut lymph purification (GLP) may remove the DAMPs of GL in the rats’ model of acute lung injury (ALI) caused by GIRI.Methods: The experimental rats were divided into four groups: Sham group, GIRI group, GIRI + gut lymph drainage (GLD) group, and GIRI + GLP group. After successful modeling, the lung tissue samples of rats in each group were taken for hematoxylin-eosin (HE) staining and detection of expression levels of apoptotic indexes. The level of DAMPs was detected in blood and lymph. We observed its microstructure of type II alveolar epithelial cells (AECⅡ), and detected the expression level of apoptosis indexes.Measurements and Main Results: GIRI-induced destruction of alveolar structure, thickened alveolar walls, inflammatory cell infiltration emerged in the GIRI group, HMGB-1 and IL-6 levels significantly increased, and HSP70 and IL-10 levels reduced in lymph and serum. Compared with GIRI group, the lung tissue damage in GIRI + GLP group significantly improved, the expression level of HMGB-1 and IL-6 in the lymph and serum reduced, and HSP70 and IL-10 increased. The organelle structure of AECII in GIRI + GLP group was significantly improved compared with the GIRI group. Conclusions: oXiris GLP blocks the key link between DAMPs and mononuclear phagocyte system to inhibit inflammation and cell apoptosis, thereby reducing ALI induced by GIRI.


Sign in / Sign up

Export Citation Format

Share Document