scholarly journals Insight into the structure of black coatings of ancient Egyptian mummies by advanced Electron magnetic resonance of vanadyl complexes

Author(s):  
Charles E. Dutoit ◽  
Laurent Binet ◽  
Hervé Vezin ◽  
Océane Anduze ◽  
Agnès Lattuati-Derieux ◽  
...  

Abstract Advanced EPR techniques such as ENDOR and pulsed EPR are used to investigate the enigmatic black coatings of ancient Egyptian mummies, consisting in a complex and heterogeneous mixtures of conifer resins, wax, fat and oil with variable amounts of bitumen. Natural bitumen always contains traces of vanadyl porphyrin complexes that we used here as internal probes to explore the nanoscale environment of V4+ ions in these black coatings by hyperfine spectroscopy. Four types of vanadyl porphyrins were identified from the analysis of 14N hyperfine interactions. Three types (referred to as VO-P1, VO-P2 and VO-P3) are present in natural bitumen from the Dead Sea, among which VO-P1 and VO-P2 are also present in black coatings of mummies. The absence of VO-P3 in mummies, which is replaced by another complex VO-P4, may be due to its transformation during preparation of the black matter for embalming. Analysis of 1H hyperfine interaction shows that bitumen and other natural substances are intimately mixed in these black coatings, with bitumen aggregate sizes not larger than a few nanometres.

Author(s):  
E. B. Yatsishina ◽  
V. M. Pozhidaev ◽  
O. A. Vasilyeva ◽  
O. P. Dyuzheva ◽  
Ya. E. Sergeeva ◽  
...  

This work presents the results of a study of the resins of seven Ancient Egyptian mummies from the collection of the Pushkin State Museum of Fine Arts using a complex of analytical methods: gas chromatography, atomic emission and mass spectrometry. Natural bitumen and beeswax were identified in the resins using the gas chromatography–mass spectrometry method. Based on the results of hydrocarbon distribution in the profiles of n-alkanes in the resin coatings of the mummies and naturally occurring bitumen, it was assumed that the Dead Sea bitumen was used. The gas chromatography–mass spectrometry studies of mummy resins in the selected ion mode (m/z 217 and 191) provided additional evidence of the bitumen’s geographic origin. Atomic emission spectrometry with inductively coupled plasma was used as a means to determine the content of microelements. Vanadium, nickel and molybdenum were found in the tar of five mummies. The determined relative amounts of vanadium, nickel, and molybdenum in the resins of the studied mummies showed a good correlation with the available data on the content of these elements in the Dead Sea bitumen, as well as the Fayum mummy resin based on this bitumen. The advantages of using the method of identifying bitumen in mummy resins based on relative content of vanadium, nickel, and molybdenum were revealed.


Author(s):  
Haim Goren

This chapter explores the importance of replication for a crucial historical turning point, when new and progressive scientific measurements of physical locations were being developed. Revisiting a location is of necessary and critical importance when replicating research in the lab or the field, but identifying a precise location can be surprisingly problematic. Geography includes the study and identification of where objects are located and how they are arranged in space. Whether identifying spreads of emergent diseases or distribution of genetically distinct populations, we use maps and topographic contours. The maps used today are the result of over a millennium of repeated field work, analysis, and interpretation that provides additional insight into the process of replication. In this chapter, this process of geographic replication and its criteria of success are illustrated with two examples: the repeated mapping of the city of Jerusalem and the attempt to measure accurately the elevation of the Dead Sea relative to sea level. These examples also reveal multiple motives for repeated exploration and study.


Author(s):  
Mark Piper, DMD MD

Computerized tomography (CT) and magnetic resonance (MR) imaging of the temporomandibular joint are often not a routine part of a dental patient's pain and clinical evaluation. As a result, the most poorly understood region within the masticatory system is the temporomandibular joint foundation. Unfortunately, patient care and occlusal management are often compromised because of a lack of insight into the relationship between the anatomy of the temporomandibular joints and the occlusion. This chapter's four distinct sections review the key concepts about the temporomandibular joint foundation anatomical structures, detail structurally intact and structurally altered temporomandibular joint anatomy, clarify how structurally altered temporomandibular joints influence occlusal function, and classify the stages of temporomandibular joint structural degeneration. The concept of joint-based malocclusion is explored with numerous temporomandibular joint foundation anomalous software renderings, and sample CT and MR images, which together illustrate in detail how soft tissue and bony abnormalities in a structurally altered temporomandibular joint can create distortions in the occlusion. Lastly, the chapter addresses the specific requirements a clinician must technically master to perform a comprehensive CT or MR examination.


Physiology ◽  
2004 ◽  
Vol 19 (4) ◽  
pp. 168-175 ◽  
Author(s):  
Robia G. Pautler

The purpose of this review is to provide an introduction to the rapidly expanding field of mouse magnetic resonance imaging (MRI). It is by no means meant to be all-inclusive but rather to provide a brief introduction to the basics of MRI theory, provide some insight into the basic experiments that can be performed in mice by using MRI, and bring to light some factors to consider when planning a mouse MRI experiment.


2019 ◽  
Vol 13 (01) ◽  
pp. 124-128 ◽  
Author(s):  
Komal Zia ◽  
Talal Siddiqui ◽  
Saqib Ali ◽  
Imran Farooq ◽  
Muhammad Sohail Zafar ◽  
...  

AbstractNuclear magnetic resonance (NMR) spectroscopy is one of the most significant analytical techniques that has been developed in the past few decades. A broad range of biological and nonbiological applications ranging from an individual cell to organs and tissues has been investigated through NMR. Various aspects of this technique are still under research, and many functions of the NMR are still pending a better understanding and acknowledgment. Therefore, this review is aimed at providing a general overview of the main principles, types of this technique, and the advantages and disadvantages of NMR spectroscopy. In addition, an insight into the current uses of NMR in the field of medicine and dentistry and ongoing developments of NMR spectroscopy for future applications has been discussed.


2017 ◽  
Vol 100 (3) ◽  
pp. 241-292 ◽  
Author(s):  
Christopher J. Rhodes

Since the original observation by Zeeman, that spectral lines can be affected by magnetic fields, ‘magnetic spectroscopy’ has evolved into the broad arsenal of techniques known as ‘magnetic resonance’. This review focuses on nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and muon spin resonance (μSR): methods which have provided unparalleled insight into the structures, reactivity and dynamics of molecules, and thereby contributed to a detailed understanding of important aspects of chemistry, and the materials, biomedical, and environmental sciences. Magnetic resonance imaging (MRI), in vivo magnetic resonance spectroscopy (MRS) and functional magnetic resonance spectroscopy (fMRS) are also described. EPR is outlined as a principal method for investigating free radicals, along with biomedical applications, and mention is given to the more recent innovation of pulsed EPR techniques. In the final section of the article, the various methods known as μSR are collected under the heading ‘muon spin resonance’, in order to emphasise their complementarity with the more familiar NMR and EPR.


Sign in / Sign up

Export Citation Format

Share Document