scholarly journals Biohydrogen production by fermentive bacterium Clostridium sp. Tr2 using batch fermenter system controlled pH under dark fermentation

2018 ◽  
Vol 9 (1) ◽  
pp. 4-10
Author(s):  
Thi Thu Huyen Nguyen ◽  
Thi Yen Dang ◽  
Thuy Hien Lai

Limitation of fuels reserves and contribution of fossil fuels to the greenhouse effect leads to develop anew, clean and sustainable energy. Among the various options, biohydrogen appears as a promising alternative energy source. The fermentative hydrogen production process holds a great promise for commercial processes. Hydrogen production by fermentative bacteria is a very complex and greatly influenced by pH. This paper presents biohydrogen production by bacterial strain Clostridium sp. Tr2. Operational pH strongly affected its hyrogen production. Its gas production rate as well as obtained gas product were roughly increase twice under controlled pH at 6 than non-controlled condition. Dark fermentation for hydrogen production of strain Tr2 was performed under bottle as well as automatic fermenter scale under optimal nutritional and environmental conditions at 30°C, initial pH at 6.5, then pH was controlled at 6 for bioreactor scale (BioFlo 110). Bioreactor scale was much better for hydrogen production of strain Tr2. Clostridium sp. Tr2 produced 0.74 L hydro (L medium)-1 occupying 72.6 % of total gas under bottle scale while it produced 2.94 L hydro (L medium)-1 occupying 95.82 % of total gas under fermenter scale. Its maximum obtained hydrogen yield of Clostridium sp. Tr2 under bioreactor scale Bioflo 110 in optimal medium with controlled pH 6 was 2.31 mol hydro (mol glucose)-1. Dự trữ nhiên liệu có giới hạn và việc sử dụng nhiên liêu hoá thạch góp phần không nhỏ gây hiệu ứng nhà kính dẫn đến cần phải phát triển năng lượng mới, sạch và bền vững. Trong số các giải pháp, hydro sinh học xuất hiện như một nguồn năng lượng thay thế đầy hứa hẹn. Quá trình lên men sản xuất hydro có tiềm năng lớn để áp dụng trong sản xuất thương mại. Tuy nhiên qúa trình này rất phức tạp và chịu ảnh hưởng lớn bởi pH. Nghiên cứu này trình bày sản xuất hydro sinh học do chủng vi khuẩn Clostridium sp. Tr2. Quá trình sản xuất hydro của chủng này bị ảnh hưởng mạnh mẽ bởi pH thay đổi trong quá trình lên men. Tốc độ tạo khí cũng như lượng khí thu được của chủng này tăng gần gấp đôi trong môi trường có duy trì pH ở pH 6 so với môi trường không kiểm soát pH. Quá trình lên men tối sản xuất hydro của chủng Tr2 được thực hiện ở quy mô bình thí nghiệm cũng như bình lên men tự động trong điều kiện môi trường tối ưu ở 30°C, pH ban đầu 6.5, ở qui mô bình lên men tự động (BioFlo 110), pH môi trường sau đó được duy trì ổn định ở pH 6. Lên men sản xuất hdyro của chủng Tr2 trong bình lên men tự động tốt hơn rất nhiều so với lên men trong bình thí nghiệm. Clostridium sp. Tr2 chỉ tạo ra được 0,74 L hydro (L medium)-1 chiếm 72,6 % tổng thể tích khí thu được ở điều kiện lên men bình thí nghiệm trong khi chủng này sản xuất được 2,94 L hydro (L medium)-1 chiếm 95,82 % tổng thể tích khí ở điều kiện lên men tự động. Sản lượng hydro thu được lớn nhất của chủng này trong bình lên men tự động BioFlo 110 trong trong môi trường tối ưu có kiểm soát pH tại pH 6 là 2,31 mol hydro (mol glucose)-1.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shao-Yi Hsia ◽  
Yu-Tuan Chou

Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentation bacteria. The hydrogen production is affected by many process conditions. For obtaining the optimal result, experimental design is planned using the Taguchi Method. Four controlling factors, the ultrasonic frequency, energy, exposure time, and starch concentration, are considered to calculate the highest hydrogen production by the Taguchi Method. Under the best operating conditions, the biohydrogen production efficiency of dark fermentation increases by 19.11%. Results have shown that the combination of ultrasound and biological reactors for dark fermentation hydrogen production outperforms the traditional biohydrogen production method. The ultrasonic mechanical effects in this research always own different significances on biohydrogen production.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Teresa Mohr ◽  
Habibu Aliyu ◽  
Lars Biebinger ◽  
Roman Gödert ◽  
Alexander Hornberger ◽  
...  

AbstractHydrogen gas represents a promising alternative energy source to dwindling fossil fuel reserves, as it carries the highest energy per unit mass and its combustion results in the release of water vapour as only byproduct. The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen via the water–gas shift reaction catalyzed by a carbon monoxide dehydrogenase–hydrogenase enzyme complex. Here we have evaluated the effects of several operating parameters on hydrogen production, including different growth temperatures, pre-culture ages and inoculum sizes, as well as different pHs and concentrations of nickel and iron in the fermentation medium. All of the tested parameters were observed to have a substantive effect on both hydrogen yield and (specific) production rates. A final experiment incorporating the best scenario for each tested parameter showed a marked increase in the H2 production rate compared to each individual parameter. The optimised parameters serve as a strong basis for improved hydrogen production with a view of commercialisation of this process.


2019 ◽  
Vol 27 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Weronika Cieciura-Włoch ◽  
Sebastian Borowski

This study investigated the batch experiments on biohydrogen production from wastes of plant and animal origin. Several substrates including sugar beet pulp (SBP), sugar beet leaves (SBL), sugar beet stillage (SBS), rye stillage (RS), maize silage (MS), fruit and vegetable waste (FVW), kitchen waste (KW) and slaughterhouse waste (SHW) including intestinal wastes, meat tissue, post flotation sludge were tested for their suitability for hydrogen production. Generally, the substrates of plant origin were found to be appropriate for dark fermentation, and the highest hydrogen yield of 280 dm3 H2/kg VS was obtained from fruit and vegetable waste. Contrary to these findings, slaughterhouse waste as well as kitchen waste turned out to be unsuitable for hydrogen production although their methane potential was high. It was also concluded that the combined thermal pretreatment with substrate acidification was needed to achieve high hydrogen yields from wastes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Silva ◽  
A. A. Abreu ◽  
A. F. Salvador ◽  
M. M. Alves ◽  
I. C. Neves ◽  
...  

AbstractThermophilic biohydrogen production by dark fermentation from a mixture (1:1) of C5 (arabinose) and C6 (glucose) sugars, present in lignocellulosic hydrolysates, and from Sargassum sp. biomass, is studied in this work in batch assays and also in a continuous reactor experiment. Pursuing the interest of studying interactions between inorganic materials (adsorbents, conductive and others) and anaerobic bacteria, the biological processes were amended with variable amounts of a zeolite type-13X in the range of zeolite/inoculum (in VS) ratios (Z/I) of 0.065–0.26 g g−1. In the batch assays, the presence of the zeolite was beneficial to increase the hydrogen titer by 15–21% with C5 and C6-sugars as compared to the control, and an increase of 27% was observed in the batch fermentation of Sargassum sp. Hydrogen yields also increased by 10–26% with sugars in the presence of the zeolite. The rate of hydrogen production increased linearly with the Z/I ratios in the experiments with C5 and C6-sugars. In the batch assay with Sargassum sp., there was an optimum value of Z/I of 0.13 g g−1 where the H2 production rate observed was the highest, although all values were in a narrow range between 3.21 and 4.19 mmol L−1 day−1. The positive effect of the zeolite was also observed in a continuous high-rate reactor fed with C5 and C6-sugars. The increase of the organic loading rate (OLR) from 8.8 to 17.6 kg m−3 day−1 of COD led to lower hydrogen production rates but, upon zeolite addition (0.26 g g−1 VS inoculum), the hydrogen production increased significantly from 143 to 413 mL L−1 day−1. Interestingly, the presence of zeolite in the continuous operation had a remarkable impact in the microbial community and in the profile of fermentation products. The effect of zeolite could be related to several properties, including the porous structure and the associated surface area available for bacterial adhesion, potential release of trace elements, ion-exchanger capacity or ability to adsorb different compounds (i.e. protons). The observations opens novel perspectives and will stimulate further research not only in biohydrogen production, but broadly in the field of interactions between bacteria and inorganic materials.


Author(s):  
Reza Ziazi ◽  
Kasra Mohammadi ◽  
Navid Goudarzi

Hydrogen as a clean alternative energy carrier for the future is required to be produced through environmentally friendly approaches. Use of renewables such as wind energy for hydrogen production is an appealing way to securely sustain the worldwide trade energy systems. In this approach, wind turbines provide the electricity required for the electrolysis process to split the water into hydrogen and oxygen. The generated hydrogen can then be stored and utilized later for electricity generation via either a fuel cell or an internal combustion engine that turn a generator. In this study, techno-economic evaluation of hydrogen production by electrolysis using wind power investigated in a windy location, named Binaloud, located in north-east of Iran. Development of different large scale wind turbines with different rated capacity is evaluated in all selected locations. Moreover, different capacities of electrolytic for large scale hydrogen production is evaluated. Hydrogen production through wind energy can reduce the usage of unsustainable, financially unstable, and polluting fossil fuels that are becoming a major issue in large cities of Iran.


2021 ◽  
Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.


2020 ◽  
Vol 1012 ◽  
pp. 158-163
Author(s):  
Oliveira Marilei de Fátima ◽  
Mazur Viviane Teleginski ◽  
Virtuozo Fernanda ◽  
Junior Valter Anzolin de Souza

Nowadays, humanity has become aware of the consequences that the use of fossil fuels entails, and the latest developments in the energy sector are leading to a diversification of energy resources. In this context, researching on alternative forms of producing electric energy is being conducted. At the transportation level, a possible solution for this matter may lie in hydrogen fuel cells. The electrolysis of water is one of the possible processes for hydrogen production, but the reaction to break the water molecule requires a great amount of energy and this is precisely the biggest issue involving this process. In this work, low cost electrodes of 254 stainless steel and electrolytic graphite were used for hydrogen production, allowing high efficiency and reduced oxidation during the process. The selection of these materials allows to obtain a high corrosion resistance electrolytic pair, by replacing the high cost platinum electrode usually employed in the alkaline electrolysis process. The formic acid of biomass origin was used as an electrolyte. It was observed that the developed reactor have no energy losses through heat and it was possible to obtain approximately 82% conversion efficiency in the gas production process.


2020 ◽  
Vol 8 ◽  
Author(s):  
Wenjuan Han ◽  
Minhan Li ◽  
Yuanyuan Ma ◽  
Jianping Yang

Hydrogen has been considered as a promising alternative energy to replace fossil fuels. Electrochemical water splitting, as a green and renewable method for hydrogen production, has been drawing more and more attention. In order to improve hydrogen production efficiency and lower energy consumption, efficient catalysts are required to drive the hydrogen evolution reaction (HER). Cobalt (Co)-based metal-organic frameworks (MOFs) are porous materials with tunable structure, adjustable pores and large specific surface areas, which has attracted great attention in the field of electrocatalysis. In this review, we focus on the recent progress of Co-based metal-organic frameworks and their derivatives, including their compositions, morphologies, architectures and electrochemical performances. The challenges and development prospects related to Co-based metal-organic frameworks as HER electrocatalysts are also discussed, which might provide some insight in electrochemical water splitting for future development.


Sign in / Sign up

Export Citation Format

Share Document