scholarly journals Biocontrol Potential of The Phloridin-Degrading Bacillus Licheniformis XNRB-3 Against Apple Replant Disease

Author(s):  
Duan Yanan ◽  
Zhao Lei ◽  
Jiang Weitao ◽  
Chen Ran ◽  
Zhang Rong ◽  
...  

Abstract Background: Apple replant disease (ARD) is a common occurrence in many major apple-growing areas worldwide, seriously hindering the development of the apple industry. To avoid the shortcomings of chemical fungicides currently used to control ARD, it is necessary to find sustainable and effective control methods. Here, an endophytic phloridin-degrading Bacillus licheniformis XNRB-3 was isolated from the root tissue of healthy apple trees, and its control effect on apple replant disease (ARD) and its how to alleviates the pathogen pressure via changes in soil microbiomes were studied.Results: The addition of strain XNRB-3 in Fusarium infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence, and the relative control effect reached more than 60%. The fermentation broth can also protect the roots of the plants from Fusarium infection. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth and spore germination inhibition via directly secreted antimicrobial substances and and indirect interspecific competition for nutrients. The antifungal organic compounds in the fermentation metabolites were identified using GC-MS technology. Among them, alpha-bisabolol and 2,4-di-tert-butylphenol had significant inhibitory effects on many planted pathogenic fungi. Butanedioic acid, monomethyl ester, and dibutyl phthalate can promote the root elongation and lateral root development of Arabidopsis plants. The potential of strain XNRB-3 to control ARD was later validated using microbial fertilizer inoculation in pot and field experiment. The addition of strain XNRB-3 significantly promoted the growth of plants, and the activity of enzymes related to disease resistance (SOD, POD, and CAT) was also significantly enhanced. It also reduced the abundance of Fusarium and the content of phenolic acids in the rhizosphere soil, improved soil microbial community structure and nutritional conditions, and increased soil microbial diversity and activity, as well as soil enzyme activity. Conclusions: The incorporation of strain XNRB-3 in the soil alleviated the damage of soil-borne pathogens to plants by reducing the relative abundance of pathogenic fungi and the content of phenolic acids, and inducing disease resistance of plants. Taken together, B. licheniformis XNRB-3 could be developed into a promising biocontrol and plant-growth-promoting agent. This provides a new management strategy to control ARD.

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Viviane Radl ◽  
Jana Barbro Winkler ◽  
Susanne Kublik ◽  
Luhua Yang ◽  
Traud Winkelmann ◽  
...  

Abstract Background Apple replant disease (ARD) is a syndrome that occurs in areas where apple plants or closely related species have been previously cultivated. Even though ARD is a well-known phenomenon, which has been observed in different regions worldwide and occurs independent of the soil type, its causes still remain unclear. Results As expected, the biomass of plants grown in replant soil was significantly lower compared to those grown in control (virgin) soil. A shotgun metagenome analysis showed a clear differentiation between the rhizosphere and bulk soil compartments independent from the soil used. However, significant differences associated with apple replant disease were only observed in the rhizosphere compartment, for which we detected changes in the abundance of major bacterial genera. Interestingly, reads assigned to Actinobacteria were significantly reduced in relative abundance in rhizosphere samples of the soil affected by replant disease. Even though reads assigned to pathogenic fungi were detected, their relative abundance was low and did not differ significantly between the two different soils. Differences in microbiome structure also resulted in shifts in functional pattern. We observed an increase in genes related to stress sensing in the rhizosphere of soils affected by replant disease, whereas genes linked to nutrient sensing and uptake dominated in control soils. Moreover, we observed a lower abundance of genes coding for enzymes which trigger the degradation of aromatic compounds in rhizosphere of soils affected by replant disease, which is probably connected with higher concentration of phenolic compounds, generally associated with disease progression. Conclusions Our study shows, for the first time, how apple replanting affects soil functioning by altering the soil microbiome. Particularly, the decrease in the abundance of genes which code for enzymes catalyzing the degradation of aromatic compounds, observed in the rhizosphere of plants grown in soil affected by apple replant disease, is of interest. Apple rootstocks are known to synthetize many phenolic compounds, including defense related phytoalexins, which have been considered for long to be connected with the emergence of replant disease. The knowledge gained in this study might help to develop targeted strategies to overcome or at least reduce the effects of ARD symptoms.


2019 ◽  
Vol 109 (8) ◽  
pp. 1378-1391 ◽  
Author(s):  
Likun Wang ◽  
Mark Mazzola

An orchard field trial was conducted to assess the utility of reduced rate Brassicaceae seed meal (SM) amendment in concert with specific rootstock genotypes for effective control of apple replant disease. Three amendment rates of a 1:1 formulation of Brassica juncea-Sinapis alba SM were compared with preplant 1,3-dichloropropene/chloropicrin soil fumigation for disease control efficacy. When applied at the highest rate (6.6 t ha−1) in the spring of planting, SM caused significant phytotoxicity and tree mortality, which was higher for Gala/M.26 than for Gala/G.41 but was not observed at SM application rates of 2.2 or 4.4 t ha−1. SM treatment resulted in growth and yield increases of Gala/M.26 and Gala/G.41 trees in a manner similar to the fumigation treatment and significantly greater than the no treatment control. Tree growth in soils treated with SM at 4.4 t ha−1 was similar or superior to that obtained with SM at 6.6 t ha−1 and superior to that attained at an SM application rate of 2.2 t ha−1. Soil fumigation and all SM treatments reduced Pratylenchus penetrans root infestation relative to the control treatment at the end of the initial growing season. Lesion nematode root densities in the fumigation treatment, but not SM treatments, rapidly recovered and were indistinguishable from the control at the end of the second growing season. Soil fumigation and all SM treatments significantly suppressed Pythium spp. root infection relative to the control. Trees grafted to rootstock G.41 possessed lower P. penetrans root densities relative to trees grafted to rootstock M.26. One year after planting, composition of microbial communities from SM-amended soils was distinct from those detected in control and fumigated soils, and the differences were amplified with increasing SM application rate. Specific fungal and bacterial phyla associated with suppression of plant pathogens were more abundant in SM-treated soil relative to the control, and they were similar in abundance in 4.4- and 6.6-t ha−1 SM treatments. Findings from this study demonstrated that use of the appropriate apple rootstock genotype will allow for effective replant disease control at SM application rates significantly less than that utilized previously (6.6 t ha−1).


2021 ◽  
Vol 7 (12) ◽  
pp. 1050
Author(s):  
Haiyan Wang ◽  
Rong Zhang ◽  
Yanan Duan ◽  
Weitao Jiang ◽  
Xuesen Chen ◽  
...  

A study was conducted for endophytic antagonistic fungi obtained from the roots of healthy apple trees growing in nine replanted orchards in Shandong Province, China. The fungi were assessed for their ability to inhibit Fusarium proliferatum f. sp. malus domestica MR5, a fungal strain associated with apple replant disease (ARD). An effective endophyte, designated as strain 6S-2, was isolated and identified as Trichoderma asperellum. Strain 6S-2 demonstrated protease, amylase, cellulase, and laccase activities, which are important for the parasitic and antagonistic functions of pathogenic fungi. The inhibition rate of 6S-2 against Fusarium proliferatum f. sp. malus domestica MR5 was 52.41%. Strain 6S-2 also secreted iron carriers, auxin, ammonia and was able to solubilize phosphorus. Its fermentation extract and volatile substances inhibited the growth of MR5, causing its hyphae to twist, shrink, swell, and rupture. The antifungal activity of the 6S-2 fermentation extract increased with increasing concentrations. It promoted the production and elongation of Arabidopsis thaliana lateral roots, and the strongest effects were seen at a concentration of 50 mg/mL. A GC-MS analysis of the 6S-2 fermentation extract and volatile substances showed that they comprised mainly alkanes, alcohols, and furanones, as well as the specific volatile substance 6-PP. The application of 6S-2 spore suspension to replanted apple orchard soils reduced plant oxidative damage and promoted plant growth in a pot experiment. Therefore, the endophytic strain T. asperellum 6S-2 has the potential to serve as an effective biocontrol fungus for the prevention of ARD in China, and appears to promote plant growth.


2019 ◽  
Vol 109 (4) ◽  
pp. 607-614 ◽  
Author(s):  
Likun Wang ◽  
Mark Mazzola

Preplant soil application of a Brassica juncea–Sinapis alba seed meal formulation (SM) at a rate of 6.6 t ha−1 alters composition of the orchard soil microbiome in a manner that yields sustainable long-term suppression of soilborne pathogens in apple production systems. However, the cost of SM amendment has hindered the adoption of this tactic to manage apple replant disease in commercial orchards. Greenhouse trials were conducted to assess the effect of reduced SM application rates in concert with apple rootstock genotype on structure of the rhizosphere microbiome and associated disease control outcomes. At all application rates assessed, SM treatment increased tree growth and reduced disease development relative to the control. In general, total tree biomass and leader shoot length were similar in soils treated with SM at 4.4 or 6.6 t ha−1 regardless of rootstock genotype. Equivalent increase in tree biomass when cultivated in soil treated at the lowest and highest SM amendment rate was attained when used in conjunction with G.41 or G.210 apple rootstocks. Suppression of Pythium spp. or Pratylenchus penetrans root densities was similar at all SM application rates. When cultivated in nontreated replant orchard soil, Geneva rootstocks (G.41 and G.210) exhibited lower levels of Pythium spp. and P. penetrans root colonization relative to Malling rootstocks (M.9 and MM.106). For a given rootstock, structure of the rhizosphere microbiome was similar in soils treated with SM at 4.4 and 6.6 t ha−1. G.41 and G.210 rootstocks but not M.9 or MM.106 cultivated in soil treated with SM at 2.2 t ha−1 possessed a rhizosphere bacterial community structure that differed significantly from the control. Findings indicate that effective control of apple replant disease may be attained at lower SM amendment rates than employed previously, with lower effective rates possible when integrated with tolerant rootstock genotypes such as G.41 or G.210.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Emma L. Tilston ◽  
Gregory Deakin ◽  
Julie Bennett ◽  
Thomas Passey ◽  
Nicola Harrison ◽  
...  

Abstract Background Apple replant disease (ARD) is a phenomenon associated with poor tree establishment at sites where the same, or a closely-related species, has grown for at least 1–2 years. No single organism has been identified as the universal causal agent, but there is increasing evidence that multiple soil-borne plant pathogenic fungi and oomycetes form an ARD disease complex. Root damage caused by root lesion nematodes has also been implicated in facilitating the entry of pathogens into root tissues resulting in the development of severe ARD. Methods We used a reductionist approach to determine effects of one or more members of the ARD complex on ARD in a number of selected rootstock genotypes with contrasting characteristics. Through a 15-month pot-based experiment in which semi-selective biocides were applied to soil from a replant orchard, we investigated (1) the nature of the interactions (i.e. antagonistic, additive or synergistic) between different groups of soil biota and ARD severity, and (2) whether rootstock characteristics modify ARD severity. Results There might be competitive interactions between oomycetes and fungal pathogens in infecting apple roots and hence subsequent ARD development. Controlling all three ARD components (oomycetes, fungi, and nematodes) led to the best root development. However, these effects on root development were not manifested in the above-ground tree development 15 months after treatment. Specific soil biocide treatments against fungi and oomycetes led to large changes in soil microbial communities whereas the nematicide treatment led to least changes. In spite of the observed ARD, comparing rhizosphere microbial sequences among treatments failed to reveal candidate pathogens for ARD. Conclusions Candidate ARD oomycetes and fungal pathogens are likely to engage in competitive interactions among themselves in infecting apple roots. Although soil amendments affected soil microbiota, such effects appear to be very unpredictable.


2001 ◽  
Vol 67 (7) ◽  
pp. 3245-3257 ◽  
Author(s):  
A. Mark Ibekwe ◽  
Sharon K. Papiernik ◽  
Jianying Gan ◽  
Scott R. Yates ◽  
Ching-Hong Yang ◽  
...  

ABSTRACT Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity,H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, Hincreased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. andHeliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
R. Soelistijono

This study examines the effectiveness of mycorrhizal Rhizoctonia resistance induction in Phalaenopsis amabilis against Fusarium sp. Fusarium solani is known as pathogens that attack many orchids P. amabilis (Chung et al., 2011) compared to other pathogenic fungi. Attack of Fusarium sp. will cause rot and yellow colored leaves. Until now there has been known as a biological control orchid against Fusarium sp. In this study tested the endurance locations in Sleman and Surakarta to see the effectiveness of a good orchid growth induced by Rhizoctonia mycorrhizal or not to attack by Fusarium sp. The results of the study showed that mycorrhizal Rhizoctonia able to inhibit the attack of Fusarium sp. It is shown by the value of the index of disease resistance  (DSI) in P. amabilis orchid mycorrhizal Rhizoctonia induced lower than that not induced. Mycorrhizal Rhizoctonia induction results in Sleman provide a more real than mycorrhizal Rhizoctonia induction in Surakarta.


Author(s):  
Alicia Balbín-Suárez ◽  
Samuel Jacquiod ◽  
Annmarie-Deetja Rohr ◽  
Benye Liu ◽  
Henryk Flachowsky ◽  
...  

Abstract A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD) causing agents to spread in soil. ‘M26’ apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of OTUs affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production, and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


Sign in / Sign up

Export Citation Format

Share Document