scholarly journals High-Speed Optical Resolution Photoacoustic Microscopy With a MEMS Scanner: Novel and Simple Distortion Correction Method

Author(s):  
Ryo Shintate ◽  
Takuro Ishii ◽  
Joongho Ahn ◽  
Jin Young Kim ◽  
Chulhong Kim ◽  
...  

Abstract Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging tool that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making biological interpretation of in-vivo tissue difficult. Here, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consisted of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposed a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method needs to run imaging sequence only once using a ruler target and it can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion. The combination of the MEMS-OR-PAM and the distortion correction method was verified by three experiments.; 1) Leaf skeleton phantom imaging to test the distortion correction efficacy.; 2) Spatial resolution and depth of focus (DOF) measurement for the system performance.; 3) In-Vivo finger capillaries imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 sec in 2 mm×4 mm) and high-lateral resolution (~6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.

Author(s):  
Xiufeng Li ◽  
Victor T C Tsang ◽  
Lei Kang ◽  
Yan Zhang ◽  
Terence T W Wong

AbstractLaser diodes (LDs) have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy (PAM). However, the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously. In this paper, we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD, operating at a pulsed mode, with a repetition rate of 30 kHz, as an excitation source. A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio. By optimizing the optical system, a high lateral resolution of 4.8 μm has been achieved. In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.


Author(s):  
Xingxing Chen ◽  
Weizhi Qi ◽  
Lei Xi

Abstract In this study, we propose a deep-learning-based method to correct motion artifacts in optical resolution photoacoustic microscopy (OR-PAM). The method is a convolutional neural network that establishes an end-to-end map from input raw data with motion artifacts to output corrected images. First, we performed simulation studies to evaluate the feasibility and effectiveness of the proposed method. Second, we employed this method to process images of rat brain vessels with multiple motion artifacts to evaluate its performance for in vivo applications. The results demonstrate that this method works well for both large blood vessels and capillary networks. In comparison with traditional methods, the proposed method in this study can be easily modified to satisfy different scenarios of motion corrections in OR-PAM by revising the training sets.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4632 ◽  
Author(s):  
Lin ◽  
Liang ◽  
Jin ◽  
Wang

Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we review recent progress in fiber-laser-based ultrasound sensors for photoacoustic microscopy, especially the dual-polarized fiber laser sensor with high sensitivity. The principle, characterization and sensitivity optimization of this type of sensor are presented. In vivo experiments demonstrate its excellent performance in the detection of photoacoustic (PA) signals in OR-PAM. This review summarizes representative applications of fiber laser sensors in OR-PAM and discusses their further improvements.


2011 ◽  
Vol 36 (7) ◽  
pp. 1236 ◽  
Author(s):  
Liang Song ◽  
Konstantin Maslov ◽  
Lihong V. Wang

2014 ◽  
Vol 22 (2) ◽  
pp. 1500 ◽  
Author(s):  
Zhenyuan Yang ◽  
Jianhua Chen ◽  
Junjie Yao ◽  
Riqiang Lin ◽  
Jing Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document