scholarly journals Lead Exposure Induces Structural Damage, Digestive Stress, Immune Response and Microbiota Dysbiosis in Intestine of Silver Carp (Hypophthalmichthys Molitrix)

Author(s):  
Haisu Liu ◽  
Hang Zhang ◽  
Sanshan Zhang ◽  
Anli Wang ◽  
Shengli Fu

Abstract Lead (Pb) is one of the most common toxic heavy metals in water, and it can cause harm to aquatic animals and humans when released into the environment. In the present study, the effects of Pb exposure on the morphology, digestive enzyme activity, immune function and microbiota structure of silver carp (Hypophthalmichthys molitrix) intestines within 96 h were detected. Moreover, the correlation between them was analyzed. The results showed that Pb exposure could severely damage the intestinal morphology on the one hand, including significantly shortening the intestinal villi’s length, increasing the goblet cells’ number, causing the intestinal leukocyte infiltration, and thickening the intestinal wall abnormally, and on the other hand, increasing the activity of intestinal digestive enzyme (trypsin and lipase). In addition, the mRNA expressions of structure-related genes (Claudin-7 and villin-1) were down-regulated, and the immune factors (IL-8, IL-10 and TNF-α) were up-regulated after Pb exposure. Furthermore, data of the MiSeq sequencing showed that the abundance of membrane transport, immune system function and digestive system of silver carp intestinal microbiota was decreased, and the cellular antigens was increased. Finally, the canonical correlation analysis (CCA) found that there were correlations between silver carp’s intestinal microbiota and intestinal morphology and immune factors. In conclusion, it is speculated that Pb may damage the intestinal barrier of silver carp, leading the microbiota dysbiosis, which further affects the intestinal immune and digestive function.

2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chianning Heng ◽  
Xihong Zhou ◽  
Guangtian Cao ◽  
Lei Jiang ◽  
...  

Abstract The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linglian Kong ◽  
Zhenhua Wang ◽  
Chuanpi Xiao ◽  
Qidong Zhu ◽  
Zhigang Song

This study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1β and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman’s correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.


2021 ◽  
Author(s):  
Linglian Kong ◽  
Zhenhua Wang ◽  
Chuanpi Xiao ◽  
Qidong Zhu ◽  
Zhi Gang Song

Extensive interactions occur between a poultry host and its gut microbiome. Glycerol monolaurate (GML) possesses a large range of antimicrobial and immunoregulatory properties. This study was conducted to investigate the impact of different doses of GML (basal diets complemented with 0, 300, 600, 900, or 1200 mg/kg GML) on growth performance, intestinal barrier, and cecal microbiota in broiler chicks. Results revealed that feed intake increased after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulated jejunal interleukin-1β and interferon-γ expression and increased the mRNA level of zonula occludens 1 and occludin. A reduced expression of toll-like receptor 4 and a tendency of down-regulated nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved microbial diversity, and increased the abundance of butyrate-producing bacteria. Spearman's correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.


2005 ◽  
Vol 40 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Nadia Berday ◽  
Driss Zaoui ◽  
Abdeljaouad Lamrini ◽  
Mustapha Abi

Abstract The effect of silver carp (Hypophthalmichthys molitrix Val.) feeding activity on the plankton communities in a high-rate pond technology system (HRPTS) effluent was investigated over a period of 100 days. The experiment was conducted at the experimental wastewater treatment plant of the Agronomic and Veterinary Medicine Institute (AVI) of Rabat, Morocco, using a HRPTS in a fish pond receiving the plant effluent. The effluent was highly dominated by phytoplankton (99.95%). Silver carp could survive and grow in the fish pond. Production was 37 kg with a very low mortality rate (12%). The high specific intestine weight (7%) and intake rates of biomass and phytoplankton by silver carp (616 g kg-1 of fish day-1 and 1.6 x 1011 cell kg-1 of fish day-1, respectively) demonstrated the importance of the feeding activity of the fish. Zooplankton intake rates were lower (2 x 107 bodies kg-1 of fish day-1). The high intestine index (3 to 4.3 for fish sizes of 14 to 22 cm) and the dominance of phytoplankton in the gut contents (99.95%) confirmed an omnivorous/ phytoplanctivorous diet. Silver carp were efficient in removing plankton from the HRPTS effluent. The net removal yields of biomass were 285 g m-3 day-1 and 322 g kg-1 of fish day-1, 7 x 1010 algal cells kg-1 of fish day-1 and 8.7 x 107 zooplankton bodies kg-1 of fish day-1, with net removal rates of 47, 64 and 62%, respectively. The total suspended solids concentration decreased from 211 in the inflow to 112 mg L-1 in the fish pond.


2020 ◽  
Vol 20 (7) ◽  
pp. 566-577 ◽  
Author(s):  
Amlan Kumar Patra

Natural plant bioactive compounds (PBC) have recently been explored as feed additives to improve productivity, health and welfare of poultry following ban or restriction of in-feed antibiotic use. Depending upon the types of PBC, they possess antimicrobial, digestive enzyme secretion stimulation, antioxidant and many pharmacological properties, which are responsible for beneficial effects in poultry production. Moreover, they may also improve the intestinal barrier function and nutrient transport. In this review, the effects of different PBC on the barrier function, permeability of intestinal epithelia and their mechanism of actions are discussed, focusing on poultry feeding. Dietary PBC may regulate intestinal barrier function through several molecular mechanisms by interacting with different metabolic cascades and cellular transcription signals, which may then modulate expressions of genes and their proteins in the tight junction (e.g., claudins, occludin and junctional adhesion molecules), adherens junction (e.g., E-cadherin), other intercellular junctional proteins (e.g., zonula occludens and catenins), and regulatory proteins (e.g., kinases). Interactive effects of PBC on immunomodulation via expressions of several cytokines, chemokines, complement components, pattern recognition receptors and their transcription factors and cellular immune system, and alteration of mucin gene expressions and goblet cell abundances in the intestine may change barrier functions. The effects of PBC are not consistent among the studies depending upon the type and dose of PBC, physiological conditions and parts of the intestine in chickens. An effective concentration in diets and specific molecular mechanisms of PBC need to be elucidated to understand intestinal barrier functionality in a better way in poultry feeding.


Aquaculture ◽  
1987 ◽  
Vol 64 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Angelito C. Gonzal ◽  
Emiliano V. Aralar ◽  
Josefina Ma.F. Pavico

Sign in / Sign up

Export Citation Format

Share Document