scholarly journals Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota

2021 ◽  
Vol 12 ◽  
Author(s):  
Linglian Kong ◽  
Zhenhua Wang ◽  
Chuanpi Xiao ◽  
Qidong Zhu ◽  
Zhigang Song

This study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1β and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman’s correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.

2021 ◽  
Author(s):  
Linglian Kong ◽  
Zhenhua Wang ◽  
Chuanpi Xiao ◽  
Qidong Zhu ◽  
Zhi Gang Song

Extensive interactions occur between a poultry host and its gut microbiome. Glycerol monolaurate (GML) possesses a large range of antimicrobial and immunoregulatory properties. This study was conducted to investigate the impact of different doses of GML (basal diets complemented with 0, 300, 600, 900, or 1200 mg/kg GML) on growth performance, intestinal barrier, and cecal microbiota in broiler chicks. Results revealed that feed intake increased after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulated jejunal interleukin-1β and interferon-γ expression and increased the mRNA level of zonula occludens 1 and occludin. A reduced expression of toll-like receptor 4 and a tendency of down-regulated nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved microbial diversity, and increased the abundance of butyrate-producing bacteria. Spearman's correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Shimaa A. Amer ◽  
Samar A. Tolba ◽  
Dina M. M. AlSadek ◽  
Doaa M. Abdel Fattah ◽  
Aziza M. Hassan ◽  
...  

Abstract Background This experiment tested the impact of the combined supplementation of glycerol monolaurate (GLM) and oregano essential oil (EO) to broiler diets. Growth performance, metabolic response, immune status, apparent ileal digestibility coefficient (AID%), and intestinal histomorphology were assessed. Three-day-old Ross-308 broilers (76.62 g ± 0.50, n = 240) were randomly allocated into 4 experimental groups (6 replicates/group and 10 chicks/replicate). Birds were fed corn-soybean meal basal diets supplemented with four levels of GLM and oregano EO blend: 0, 0.15, 0.45, and 0.75% for 35 days. Results During the starter period, dietary GLM and oregano EO did not show significant (P > 0.05) changes in growth performance. During the grower period, GLM and oregano EO supplemented groups showed a linear and quadratic decline in FCR. During the finisher and overall performance, a linear increase in the body weight (BW), body weight gain (BWG), the protein efficiency ratio (PER), and relative growth rate (RGR), and a linear decrease in the FCR at 0.75% dietary level of GLM and oregano EO compared to the control. The broken-line regression model showed that the optimum dietary level of GLM and oregano EO blend was 0.58% based on final BW and FCR. The 0.45% or 0.15% dietary level of supplemented additives lowered (P < 0.05) the AID% of threonine and arginine, respectively, with no change in the AID% of other assessed amino acids at all dietary levels. Muscle thickness in jejunum and ileum in all dietary supplemented groups was increased (P < 0.05); however, such increase (P < 0.05) in the duodenum was shown at 0.45 and 0.75% dietary levels. All GLM and oregano EO supplemented groups showed increased (P < 0.05) duodenal, jejunal, and ileal villus height. The 0.15 and/or 0.75% dietary levels of supplemented additives increased (P < 0.05) the ileal and duodenal crypt depth, respectively, with a decreased (P < 0.05) duodenal crypt depth at 0.15% dietary level. The goblet cell count in ileum decreased (P < 0.05) in all GLM and oregano EO supplemented groups, but this decreased count (P < 0.05) was detected in jejunum at 0.45 and 0.75% dietary levels. The GLM and oregano EO supplemented groups did not show significant (P > 0.05) changes in the assessed metabolic and immune status parameters. Economically, the total return and performance index was increased at 0.75% dietary level. Conclusion Better growth performance was achieved at a 0.75 % dietary level of GLM and oregano EO by improving most intestinal morphometric measures. The optimum dietary level detected was 0.58%. The lack of influence of supplemented additives on chickens' immune and metabolic responses could indicate a lack of synergy between GLM and oregano EO.


Gut Pathogens ◽  
2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jana Schreier ◽  
Daniela Karasova ◽  
Magdalena Crhanova ◽  
Ivan Rychlik ◽  
Silke Rautenschlein ◽  
...  

Abstract Background Enterococcus cecorum (EC) is one of the main reasons for skeletal disease in meat type chickens. Intervention strategies are still rare and focus mainly on early antibiotic treatment of the disease, although there are no data available concerning the effectivity of this procedure. The present study aimed to investigate the effectivity of early lincomycin-spectinomycin treatment during the first week of life after EC-infection. Furthermore, the impact of lincomycin-spectinomycin treatment and EC infection on the development of cecal microbiota was investigated. Methods A total of 383 day-old broiler chicks were randomly assigned to four groups (non-infected and non-treated, non-infected and treated, EC-infected and non-treated, and EC-infected and treated). The EC-infected groups were inoculated orally with an EC suspension at the day of arrival and at study day 3. The treatment groups were treated with lincomycin-spectinomycin via the drinking water for six consecutive days, starting two hours after the first inoculation. Necropsy of 20 chickens per group was performed at study days 7, 14, 21, and 42. Bacteriological examination via culture and real-time PCR was performed to detect EC in different extraintestinal organs. Cecal samples of nine chickens per group and necropsy day were analyzed to characterize the composition of the cecal microbiota. Results No clinical signs or pathologic lesions were found at necropsy, and EC was not detected in extraintestinal organs of the EC-infected and treated birds. Lincomycin-spectinomycin promoted the growth of the bacterial genus Escherichia/Shigella and reduced the amount of potentially beneficial Lactobacillus spp. in the ceca regardless of EC-infection. Unexpectedly, the highest abundances of the genus Enterococcus were found directly after ending antibiotic treatment in both treatment groups, suggesting the growth of resistant enterococcal species. EC was not detected among the most abundant members of the genus Enterococcus. Oral EC-infection at the first day of life did not influence the development of cecal microbiota in the present study. Conclusions Lincomycin-spectinomycin treatment during the first week of life can prevent the EC-associated disease in broiler type chickens and has a direct impact on the development of the cecal microbiota. The low abundance of EC in the ceca of infected chickens underlines the pathogenic nature of the disease-causing EC strains. Further research on alternative prevention and intervention strategies is needed with regard to current efforts on reducing the use of antibiotics in livestock animals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Liu ◽  
Qian Lin ◽  
Xuan Huang ◽  
Guitao Jiang ◽  
Chuang Li ◽  
...  

The present study investigated the effects of ferulic acid (FA) on the growth performance, serum cytokine profile, intestinal morphology, and intestinal microbiota in ducks at the growing stage. 300 female Linwu ducks at 28 days of age with similar body weights were randomly divided into five groups. Each group contained six replicates of 10 birds. The dietary treatments were corn-soybean-based diet supplemented with FA at the concentrations of 0 (control), 100, 200, 400, and 800 mg/kg diet. The results demonstrated that dietary FA at the levels of 200, 400, and 800 mg/kg increased the average daily gain (P = 0.01), 400 and 800 mg/kg FA increased the final body weight (P = 0.02), 100, 200, and 800 mg/kg FA increased the serum glutathione (P = 0.01), and 100, 400, and 800 mg/kg FA increased the glutathione peroxidase activities in birds (P &lt; 0.01). Additionally, 200, 400, and 800 mg/kg dietary FA lowered the serum levels of interleukin-2 (P = 0.02) and interleukin-6 (P = 0.04). Moreover, the morphometric study of the intestines indicated that 400 mg/kg FA decreased the crypt depth in jejunum (P = 0.01) and caecum (P = 0.04), and increased the ratio of villus height to crypt depth in jejunum (P = 0.02). Significant linear and/or quadratic relationships were found between FA concentration and the measured parameters. 16S rRNA sequencing revealed that dietary FA increased the populations of genera Faecalibacterium, Paludicola, RF39, and Faecalicoccus in the cecum (P &lt; 0.05), whereas decreased the populations of Anaerofilum and UCG-002 (P &lt; 0.05). The Spearman correlation analysis indicated that phylum Proteobacteria were negatively, but order Oscillospirales, and family Ruminococcaceae were positively related to the parameters of the growth performance. Phylum Bacteroidetes, class Negativicutes and family Rikenellaceae were negatively associated with the parameters of the antioxidative capability. And phylum Cyanobacteria, Elusimicrobia, and Bacteroidetes, class Bacilli, family Rikenellaceae, and genus Prevotella were positively associated with the parameters of the immunological capability. Thus, it was concluded that the supplementations of 400 mg/kg FA in diet was able to improve the growth performance, antioxidative and immunological capabilities, intestinal morphology, and modulated the gut microbial construction of Linwu ducks at the growing stage.


Author(s):  
Q. J. Wu ◽  
Z. H. Liu ◽  
C. Jiao ◽  
B. Y. Cheng ◽  
D. D. Zhu ◽  
...  

The effect of glutamine (Gln) on growth performance, intestinal morphology and intestinal barrier function were evaluated in broilers. A total of 320 birds were divided into a control group (CON) and three experimental groups (Gln 1, Gln 2 and Gln 3). Broilers of group CON received basal diet; broilers in group Gln 1, Gln 2 and Gln 3 were supplemented with 0.5%, 1.0% and 1.5 % Gln, respectively, for 42 days. The results indicated that Gln has no influence on the average daily gain (ADG) among the treatments in the periods of 1 to 21 d, 22 to 42 d and 1 to 42 d (P > 0.05). However, Gln improved average daily feed intake (ADFI) and feed intake: average daily gain (F: G), increased the villus height, villus height to crypt depth ratio (V/C) and the activities of sucrose, the ZO1, claudin-1 and occluding mRNA expression levels (P 0.05). Moreover, Gln decreased the crypt depth of jejunum and ileum in broilers at days 21 and 42 (P 0.05). In conclusion, Gln had a positive effect on growth performance and gut parameters by modifying the function of the intestinal mucosa barrier.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1716
Author(s):  
Christophe Espírito Santo ◽  
Catarina Caseiro ◽  
Maria João Martins ◽  
Rosário Monteiro ◽  
Inês Brandão

The gut microbiota is often mentioned as a “forgotten organ” or “metabolic organ”, given its profound impact on host physiology, metabolism, immune function and nutrition. A healthy diet is undoubtedly a major contributor for promoting a “good” microbial community that turns out to be crucial for a fine-tuned symbiotic relationship with the host. Both microbial-derived components and produced metabolites elicit the activation of downstream cascades capable to modulate both local and systemic immune responses. A balance between host and gut microbiota is crucial to keep a healthy intestinal barrier and an optimal immune homeostasis, thus contributing to prevent disease occurrence. How dietary habits can impact gut microbiota and, ultimately, host immunity in health and disease has been the subject of intense study, especially with regard to metabolic diseases. Only recently, these links have started to be explored in relation to lung diseases. The objective of this review is to address the current knowledge on how diet affects gut microbiota and how it acts on lung function. As the immune system seems to be the key player in the cross-talk between diet, gut microbiota and the lungs, involved immune interactions are discussed. There are key nutrients that, when present in our diet, help in gut homeostasis and lead to a healthier lifestyle, even ameliorating chronic diseases. Thus, with this review we hope to incite the scientific community interest to use diet as a valuable non-pharmacological addition to lung diseases management. First, we talk about the intestinal microbiota and interactions through the intestinal barrier for a better understanding of the following sections, which are the main focus of this article: the way diet impacts the intestinal microbiota and the immune interactions of the gut–lung axis that can explain the impact of diet, a key modifiable factor influencing the gut microbiota in several lung diseases.


Toxins ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Fernando Galdino Ricci ◽  
Leticia Rodrigues Terkelli ◽  
Emerson José Venancio ◽  
Larissa Justino ◽  
Beatriz Queiroz dos Santos ◽  
...  

Ochratoxin A (OTA) is a mycotoxin produced by species of Penicillium and Aspergillus that can contaminate products of plant origin that are used as animal feed. Through oral exposure, this mycotoxin primarily affects the chicken gastrointestinal system. The present study evaluated the intestinal toxic effects of OTA and the introduction of L-tryptophan to alleviate these effects in chickens. One-day-old chicks were exposed to a single OTA dose (1.4 mg/kg body weight—b.w.) and treated with or without four daily doses of L-tryptophan (100 mg/kg b.w.). Duodenal villus height/crypt depth, fecal immunoglobulin A/immunoglobulin Y (IgA/IgY) levels, and duodenal positive immunoglobulin A cells (IgA+) were evaluated by histology, ELISA, and immunohistochemistry, respectively, on the 14th day. There were significant changes in the duodenal villus height, crypt depth, and levels of fecal IgA/IgY and duodenal IgA+ cells (p < 0.05) in groups exposed to OTA. On the other hand, groups exposed to OTA and treated with L-tryptophan showed similar levels of villus height, IgA/IgY levels, and duodenal IgA+ cells to those of the control group (p > 0.05). In conclusion, exposure to a single dose of OTA orally induces changes in intestinal morphology, levels of IgA/IgY antibodies, and IgA+ cells. Thus, treatment with L-tryptophan may be a valid alternative means to reduce the harmful effects of OTA on the intestinal mucosa, which requires further study.


2015 ◽  
Vol 45 (10) ◽  
pp. 1835-1840 ◽  
Author(s):  
Marina Jorge de Lemos ◽  
Lígia Fátima Lima Calixto ◽  
Osvanira dos Santos Alves ◽  
Daniele Santos de Souza ◽  
Bárbara Brandt Moura ◽  
...  

The objective of this study was to evaluate the effect of the addition of kaolin in the diet on performance, litter moisture and intestinal morphology of broiler chickens. Four hundred ninety-two broiler chickens distributed in a completely randomized design with three treatments and four replicates of 41 birds each, divided into three periods (15-21; 22-34; 35-52 days) were used. The following treatments were: Control - reference diet without added kaolin; treatment 1 - reference diet + 0.75% kaolin; Treatment 2 - reference diet + 1.5% kaolin. The variables analyzed were: feed intake, average weight, average weight gain, feed conversion, litter moisture, villus height and crypt depth. The inclusion of kaolin in the diet significantly reduced feed intake, increased weight and average weight gain and improved feed conversion of broilers. The litter moisture decreased significantly after the inclusion of kaolin in the diet. The height of the duodenal villi of broilers increased significantly after inclusion of kaolin, while crypt depth was not influenced. The inclusion 0.75% of kaolin in the diet improved the performance, decreased litter moisture and benefited the intestinal integrity of broilers.


2015 ◽  
Vol 55 (5) ◽  
pp. 580
Author(s):  
Safa Zhaleh ◽  
Abolghasem Golian ◽  
Seyed Ali Mirghelenj ◽  
Avisa Akhavan ◽  
Abdollah Akbarian

This study was conducted to evaluate the effect of dietary levels of extruded full fat soybean (EFFSB) on growth performance, physiological enzymes and intestinal morphology of broiler chickens at market age. A batch of FFSB was wet-extruded at 170°C for 15 s to provide the EFFSB. Ross 308 male broiler chicks (144 one-day old) were divided into 12 groups of 12 birds each and allocated to one of the starter, grower and finisher diets containing 0%, 7.5% and 15% of EFFSB. Feed intake and weight gain of chicks fed the diet containing 15% of EFFSB were significantly (P < 0.05) reduced compared with those fed the control diet during 0–10 days of age, but were not influenced during grower and finisher stages and the whole period (P > 0.05). The triglyceride and low-density lipoprotein (LDL) concentrations in blood serum were significantly (P < 0.05) decreased with an increase in dietary levels of EFFSB at 42 days of age. Length of villi and villus absorptive surface area in duodenum section were linearly decreased (P < 0.05) with an increase in dietary level of EFFSB (P < 0.05), although crypt depth and villus length : crypt depth ratio were not affected (P > 0.05). These morphological criteria were not affected by the dietary level of EFFSB measured in jejunum and ileum sections (P > 0.05). It is concluded that the use of EFFSB in feed may reduce the duodenal surface area and serum triglyceride and LDL cholesterol concentrations, but has no effect on performance of broiler chickens at market age.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yenan Mo ◽  
Huang Sun ◽  
Lei Zhang ◽  
Wenjia Geng ◽  
Lixin Wang ◽  
...  

Objectives: As nitrogen-free precursors of corresponding essential amino, α-ketoacid have been widely prescribed to end-stage renal disease patients together with a low protein diet However, the impact of α-ketoacid on intestinal microbiota in chronic kidney disease (CKD) individuals is unknown. The study aims at investigating the variation in the intestinal microbiota and metabolic profile in response to α-ketoacid treatment in an adenine-induced CKD rat model.Design: Rats in the treatment groups were given solution of compound α-ketoacid tablets. At the end of the study, blood, feces, colon tissues and kidney tissues were collected and processed for biochemical analyses, histological and western blot analyses, 16S rRNA sequence and untargeted metabolomic analyses.Results:α-Ketoacid treatment reduced serum creatinine, blood urea nitrogen and 24 h urine protein, and alleviated tubular atrophy, glomerulosclerosis and interstitial fibrosis in adenine-induced CKD rats. Moreover, α-ketoacid significantly improved intestinal barrier and increased the abundance of Methanobrevibacter, Akkermansia, Blautia and Anaerositipes while reduced the abundance of Anaerovorax and Coprococcus_3 at the genus level. In addition, our results also demonstrated that α-ketoacid significantly reduced the concentrations of indoxyl sulfate, betaine, choline and cholesterol. Spearman’s correlation analysis revealed that the abundance of Coprococcus_3 was positively correlated with serum level of betaine, trimethylamine N-oxide, indoxyl sulfate, cholic acid and deoxycholic acid.Conclusion:α-Ketoacid has a reno-protective effect against adenine-induced CKD, which may be mediated regulation of serum metabolic profiles via affecting intestinal microbial community.


Sign in / Sign up

Export Citation Format

Share Document