scholarly journals Characteristics, Decoupling Effect And Driving Factors of Regional Tourism's Carbon Emissions In China

Author(s):  
Guobao Xiong ◽  
Junhong Deng ◽  
Baogen Ding

Abstract Using the tourism's carbon emission data of 30 provinces (cities) in China from 2007 to 2019, we have established a logarithmic mean Divisia index (LMDI) model to identify the main driving factors of carbon emissions related to tourism and a Tapio decoupling model to analyze the decoupling relationship between tourism's carbon emissions and tourism-driven economic growth. Our analysis suggests that China's regional tourism's carbon emissions are growing significantly with marked differences across its regions. Although there are observed fluctuations in the decoupling relationship between regional tourism's carbon emissions and tourism-driven economic growth in China, the data suggest weak decoupling. Nonetheless, the degree of decoupling is rising to various extents across regions. Three of the five driving factors investigated are also found to affect on emissions. Both tourism scale and tourism consumption lead to the growth of tourism's carbon emissions, while energy intensity has a significant effect on reducing emissions. These effects differ across regions.

Author(s):  
Di Zhang ◽  
Zhanqi Wang ◽  
Shicheng Li ◽  
Hongwei Zhang

The urban agglomerations in the middle reaches of the Yangtze River (MYR-UA) are facing a severe challenge in reducing carbon emissions while maintaining stable economic growth and prioritizing ecological protection. The energy consumption related to land urbanization makes an important contribution to the increase in carbon emissions. In this study, an IPAT/Kaya identity model is used to understand how land urbanization affected carbon emissions in Wuhan, Changsha, and Nanchang, the three major cities in the middle reaches of the Yangtze River, from 2000 to 2017. Following the core idea of the Kaya identity model, sources of carbon emissions are decomposed into eight factors: urban expansion, economic level, industrialization, population structure, land use, population density, energy intensity, and carbon emission intensity. Furthermore, using the Logarithmic Mean Divisia Index (LMDI), we analyze how the different time periods and time series driving forces, especially land urbanization, affect regional carbon emissions. The results indicate that the total area of construction land and the total carbon emissions increased from 2000 to 2017, whereas the growth in carbon emissions decreased later in the period. Energy intensity is the biggest factor in restraining carbon emissions, followed by population density. Urban expansion is more significant than economic growth in promoting carbon emissions, especially in Nanchang. In contrast, the carbon emission intensity has little influence on carbon emissions. Changes in population structure, industrial level, and land use vary regionally and temporally over the different time period.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5455
Author(s):  
Lili Sun ◽  
Huijuan Cui ◽  
Quansheng Ge

‘Belt and Road Initiative’ (B&R) countries play critical roles in mitigating global carbon emission under the Paris agreement, but their driving factors and feasibility to reduce carbon emissions remain unclear. This paper aims to identify the main driving factors (MDFs) behind carbon emissions and predict the future emissions trajectories of the B&R countries under different social-economic pathways based on the extended STIRPAT (stochastic impacts by regression on population, affluence, and technology) model. The empirical results indicate that GDP per capita and energy consumption structure are the MDFs that promote carbon emission, while energy intensity improvement is the MDF that inhibits carbon emission. Population, as another MDF, has a dual impact across countries. The carbon emissions in all B&R countries are predicted to increase from SSP1 to SSP3, but emissions trajectories vary across countries. Under the SSP1 scenario, carbon emissions in over 60% of B&R countries can peak or decline, and the aggregated peak emissions will amount to 21.97 Gt in 2030. Under the SSP2 scenario, about half of the countries can peak or decline, while their peak emissions and peak time are both higher and later than SSP1, the highest emission of 25.35 Gt is observed in 2050. Conversely, over 65% of B&R countries are incapable of either peaking or declining under the SSP3 scenario, with the highest aggregated emission of 33.10 Gt in 2050. It is further suggested that decline of carbon emission occurs when the inhibiting effects of energy intensity exceed the positive impacts of other MDFs in most B&R countries.


2014 ◽  
Vol 926-930 ◽  
pp. 4411-4414
Author(s):  
Mei Ling He ◽  
Xiao Hui Wu

According to the calculation method of the IPCC, the paper calculates the composition and intensity of carbon emissions from transportation energy consumption in China from 2000 to 2011. Based on logarithmic mean divisia index (LMDI) decomposition technique, changes of carbon emissions quantity are analyzed by three factors which are the transportation energy intensity, the economic growth and the transportation energy structure. The results show: (1) Transportation energy intensity was significantly decreased. Under its influence carbon emission intensity from the transportation energy was decreased, indicating that the energy efficiency was improved continuously. (2) Transport carbon emissions were in a growing trend. The greatest influence factor was the economic growth which had a positive effect and enlarged transportation carbon emissions quantity. On the other hand, the factors of the transportation energy intensity had a negative effect. Except 2011, the transportation energy structure always had a negative effect, which reduced transportation carbon emissions quantity.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


2013 ◽  
Vol 869-870 ◽  
pp. 746-749
Author(s):  
Tian Tian Jin ◽  
Jin Suo Zhang

Abstract. Based on ARDL model, this paper discussed the relationship of energy consumption, carbon emission and economic growth.The results indicated that the key to reduce carbon emissions lies in reducing energy consumption, optimizing energy structure.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2706 ◽  
Author(s):  
Feng Wang ◽  
Mengnan Gao ◽  
Juan Liu ◽  
Wenna Fan

Under the “new normal”, China is facing more severe carbon emissions reduction targets. This paper estimates the carbon emission data of various provinces in China from 2008 to 2014, constructs a revised gravity model, and analyzes the network structure and effects of carbon emissions in various provinces by using social network analysis (SNA) and quadratic assignment procedure (QAP) analysis methods. The conclusions show that there are obvious spatial correlations between China’s provinces and regions in terms of carbon emissions: Tianjin, Shanghai, Zhejiang, Jiangsu and Guangdong are in the center of the carbon emission network, and play the role of “bridges”. Carbon emissions can be divided into four blocks: “bidirectional spillover block”, “net beneficial block”, “net spillover block” and “broker block”. The differences in the energy consumption, economic level and geographical location of the provinces have a significant impact on the spatial correlation relationship of carbon emissions. Finally, the improvement of the robustness of the overall network structure and the promotion of individual network centrality can significantly reduce the intensity of carbon emissions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Li ◽  
Qing-Xiang Ou

This paper employs an extended Kaya identity as the scheme and utilizes the Logarithmic Mean Divisia Index (LMDI II) as the decomposition technique based on analyzing CO2emissions trends in China. Change in CO2emissions intensity is decomposed from 1995 to 2010 and includes measures of the effect of Industrial structure, energy intensity, energy structure, and carbon emission factors. Results illustrate that changes in energy intensity act to decrease carbon emissions intensity significantly and changes in industrial structure and energy structure do not act to reduce carbon emissions intensity effectively. Policy will need to significantly optimize energy structure and adjust industrial structure if China’s emission reduction targets in 2020 are to be reached. This requires a change in China’s economic development path and energy consumption path for optimal outcomes.


2019 ◽  
Vol 11 (5) ◽  
pp. 1444 ◽  
Author(s):  
Xintao Li ◽  
Dong Feng ◽  
Jian Li ◽  
Zaisheng Zhang

Based on the carbon emission data in the Beijing–Tianjin–Hebei urban agglomeration from 2007 to 2016, this paper used the method of social network analysis (SNA) to investigate the spatial correlation network structure of the carbon emission. Then, by constructing the synergetic abatement effect model, we calculated the synergetic abatement effect in the cities and we empirically examined the influence of the spatial network characteristics on the synergetic abatement effect. The results show that the network density first increased from 0.205 in 2007 to 0.263 in 2014 and then decreased to 0.205 in 2016; the network hierarchy fluctuated around 0.710, and the minimum value of the network efficiency was 0.561, which indicates that the network hierarchy structure is stern and the network has good stability. Beijing and Tianjin are in the center of the carbon emission spatial network and play important “intermediary” and “bridge” roles that can have better control over other carbon emission spatial spillover relations between the cities, thus the spatial network of carbon emissions presents a typical “center–periphery” structure. The synergetic abatement effect increased from −2.449 in 2007 to 0.800 in 2011 and then decreased to −1.653 in 2016; the average synergetic effect was −0.550. This means that the overall synergetic level has a lot of room to grow. The carbon emission spatial network has a significant influence on the synergetic abatement effect, while increasing the network density and the network hierarchy. Decreasing the network efficiency will significantly enhance the synergetic abatement effect.


2020 ◽  
Vol 12 (3) ◽  
pp. 1089
Author(s):  
Jiancheng Qin ◽  
Hui Tao ◽  
Chinhsien Cheng ◽  
Karthikeyan Brindha ◽  
Minjin Zhan ◽  
...  

Analyzing the driving factors of regional carbon emissions is important for achieving emissions reduction. Based on the Kaya identity and Logarithmic Mean Divisia Index method, we analyzed the effect of population, economic development, energy intensity, renewable energy penetration, and coefficient on carbon emissions during 1990–2016. Afterwards, we analyzed the contribution rate of sectors’ energy intensity effect and sectors’ economic structure effect to the entire energy intensity. The results showed that the influencing factors have different effects on carbon emissions under different stages. During 1990–2000, economic development and population were the main factors contributing to the increase in carbon emissions, and energy intensity was an important factor to curb the carbon emissions increase. The energy intensity of industry and the economic structure of agriculture were the main factors to promote the decline of entire energy intensity. During 2001–2010, economic growth and emission coefficient were the main drivers to escalate the carbon emissions, and energy intensity was the key factor to offset the carbon emissions growth. The economic structure of transportation, and the energy intensity of industry and service were the main factors contributing to the decline of the entire energy intensity. During 2011–2016, economic growth and energy intensity were the main drivers of enhancing carbon emissions, while the coefficient was the key factor in curbing the growth of carbon emissions. The industry’s economic structure and transportation’s energy intensity were the main factors to promote the decline of the entire energy intensity. Finally, the suggestions of emissions reductions are put forward from the aspects of improving energy efficiency, optimizing energy structure and adjusting industrial structure etc.


Sign in / Sign up

Export Citation Format

Share Document