scholarly journals Experimental Investigations into Assessment of Thrust Force and Temperature in Bone Drilling

Author(s):  
VISHWANATH ASHOK MALI ◽  
H. N. Warhatkar ◽  
R. S. Pawade

Abstract Drilling of bone is a challenging task for surgeons due to its effect on bone tissues. During drilling, it is noted that the temperature of bone increases. This increase in temperature if above 47°C causes thermal necrosis. Experiments were conducted to study the effect of input drilling parameters and drill bit parameters on bone health. To plan experiments a full factorial design method was used. An analysis is done on the effect of input parameters on thrust force and temperature of bone. The analysis of results shows an increase in thrust force and temperature when the feed rate increases and the spindle speed decreases. Further, the analysis of results shows an increase in thrust force and temperature when point angle increases and helix angle decreases. The increase in thrust force results in temperature rise. Scanning electron microscopy is done to analyze the surface topography of drilled hole. SEM image analysis shows an increase micro-crack in the drilled area when the thrust force and temperature increases.

2021 ◽  
Vol 5 (7) ◽  
pp. 189
Author(s):  
Muhammad Hafiz Hassan ◽  
Jamaluddin Abdullah ◽  
Gérald Franz ◽  
Chim Yi Shen ◽  
Reza Mahmoodian

Drilling two different materials in a layer, or stack-up, is being practiced widely in the aerospace industry to minimize critical dimension mismatch and error in the subsequent assembly process, but the compatibility of the drill to compensate the widely differing properties of composite is still a major challenge to the industry. In this paper, the effect of customized twist drill geometry and drilling parameters are being investigated based on the thrust force signature generated during the drilling of CFRP/Al7075-T6. Based on ANOVA, it is found that the maximum thrust force for both CFRP and Al7075-T6 are highly dependent on the feed rate. Through the analysis of maximum thrust force, supported by hole diameter error, hole surface roughness, and chip formation, it is found that the optimum tool parameters selection includes a helix angle of 30°, primary clearance angle of 6°, point angle of 130°, chisel edge angle of 30°, speed of 2600 rev/min and feed rate of 0.05 mm/rev. The optimum parameters obtained in this study are benchmarked against existing industry practice of the capability to produce higher hole quality and efficiency, which is set at 2600 rev/min for speed and 0.1 mm/rev for feed rate.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


Author(s):  
Steven Micucci ◽  
Gerard Chang ◽  
Eric Smith ◽  
Charles Cassidy ◽  
Amrit Sagar ◽  
...  

Thermal necrosis of bone occurs at sustained temperatures above approximately 47°C. During joint replacement surgery, resection of bone by sawing can heat the bone above this necrotic threshold, thereby inducing cellular damage and negatively affecting surgical outcomes. The aim of this research was to investigate the effect of saw blade speed and applied thrust force on the heating of bone. A sagittal sawing fixture was used to make cuts in cortical bovine bone, while thermocouples were used to characterize the temperature profile from the cut surface. A full factorial Design of Experiments was performed to determine the relative effects of blade speed and applied thrust force on temperature. When comparing the effect of speed to force in the regression analysis, the effect of force on temperature (p < 0.001) was 2.5 times more significant than speed (p = 0.005). The interaction of speed and force was not statistically significant (p > 0.05). The results of this research can be used in the development of training simulators, where virtual surgeries with haptic feedback can be accompanied by the related temperatures in proximity to the cut. From a clinical perspective, the results indicate that aggressive cutting at higher blade speed and greater thrust force results in lower temperatures in the surrounding bone.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


Scanning ◽  
1986 ◽  
Vol 8 (5) ◽  
pp. 221-231 ◽  
Author(s):  
R. M. Edwards ◽  
J. Lebiedzik ◽  
G. Stone

2007 ◽  
Vol 534-536 ◽  
pp. 1529-1532 ◽  
Author(s):  
Celine Pascal ◽  
Jean Marc Chaix ◽  
A. Dutt ◽  
Sabine Lay ◽  
Colette H. Allibert

A steel/cemented carbide couple is selected to generate a tough/hard two layers material. The sintering temperature and composition are chosen according to phase equilibria data. The choice of optimal sintering conditions needs experimental studies. First results evidence liquid migration from the hard layer to the tough one, leading to porosity in the hard region. The study of microstructure evolution during sintering of the tough material (TEM, SEM, image analysis) evidences the coupled mechanisms of pore reduction and WC dissolution, and leads to temperature and time ranges suitable to limit liquid migration. The sintering of the two layer material is then shown to need further compromises to avoid interface crack formation due to differential densification.


2014 ◽  
Vol 14 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yashvir Singh ◽  
Amneesh Singla ◽  
Ajay Kumar

AbstractThis paper presents a statistical analysis of process parameters for surface roughness in drilling of Al/Al2O3p metal matrix composite. The experimental studies were conducted under varying spindle speed, feed rate, point angle of drill. The settings of drilling parameters were determined by using Taguchi experimental design method. The level of importance of the drilling parameters is determined by using analysis of variance. The optimum drilling parameter combination was obtained by using the analysis of signal-to-noise ratio. Through statistical analysis of response variables and signal-to-noise ratios, the determined significant factors are depth of cut and drill point angle with the contributions of 87% and 12% respectively, whereas the cutting speed is insignificant contributing by 1% only. Confirmation tests verified that the selected optimal combination of process parameter through Taguchi design was able to achieve desired surface roughness.


Sign in / Sign up

Export Citation Format

Share Document