Statistical Analysis of Process Parameters in Drilling of Al/Al2O3p Metal Matrix Composites

2014 ◽  
Vol 14 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yashvir Singh ◽  
Amneesh Singla ◽  
Ajay Kumar

AbstractThis paper presents a statistical analysis of process parameters for surface roughness in drilling of Al/Al2O3p metal matrix composite. The experimental studies were conducted under varying spindle speed, feed rate, point angle of drill. The settings of drilling parameters were determined by using Taguchi experimental design method. The level of importance of the drilling parameters is determined by using analysis of variance. The optimum drilling parameter combination was obtained by using the analysis of signal-to-noise ratio. Through statistical analysis of response variables and signal-to-noise ratios, the determined significant factors are depth of cut and drill point angle with the contributions of 87% and 12% respectively, whereas the cutting speed is insignificant contributing by 1% only. Confirmation tests verified that the selected optimal combination of process parameter through Taguchi design was able to achieve desired surface roughness.

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2018 ◽  
Vol 1148 ◽  
pp. 109-114
Author(s):  
M. Balaji ◽  
C.H. Nagaraju ◽  
V.U.S. Vara Prasad ◽  
R. Kalyani ◽  
B. Avinash

The main aim of this work is to analyse the significance of cutting parameters on surface roughness and spindle vibrations while machining the AA6063 alloy. The turning experiments were carried out on a CNC lathe with a constant spindle speed of 1000rpm using carbide tool inserts coated with Tic. The cutting speed, feed rate and depth of cut are chosen as process parameters whose values are varied in between 73.51m/min to 94.24m/min, 0.02 to 0.04 mm/rev and 0.25 to 0.45 mm respectively. For each experiment, the surface roughness parameters and the amplitude plots have been noted for analysis. The output data include surface roughness parameters (Ra,Rq,Rz) measured using Talysurf and vibration parameter as vibration amplitude (mm/sec) at the front end of the spindle in transverse direction using single channel spectrum analyzer (FFT).With the collected data Regression analysis is also performed for finding the optimum parameters. The results show that significant variation of surface irregularities and vibration amplitudes were observed with cutting speed and feed. The optimum cutting speed and feed from the regression analysis were 77.0697m/min and 0.0253mm/rev. for the minimum output parameters. No significant effect of depth of cut on output parameters is identified.


Author(s):  
Brian Boswell ◽  
Mohammad Nazrul Islam ◽  
Ian J Davies ◽  
Alokesh Pramanik

The machining of aerospace materials, such as metal matrix composites, introduces an additional challenge compared with traditional machining operations because of the presence of a reinforcement phase (e.g. ceramic particles or whiskers). This reinforcement phase decreases the thermal conductivity of the workpiece, thus, increasing the tool interface temperature and, consequently, reducing the tool life. Determining the optimum machining parameters is vital to maximising tool life and producing parts with the desired quality. By measuring the surface finish, the authors investigated the influence that the three major cutting parameters (cutting speed (50–150 m/min), feed rate (0.10–0.30 mm/rev) and depth of cut (1.0–2.0 mm)) have on tool life. End milling of a boron carbide particle-reinforced aluminium alloy was conducted under dry cutting conditions. The main result showed that contrary to the expectations for traditional machined alloys, the surface finish of the metal matrix composite examined in this work generally improved with increasing feed rate. The resulting surface roughness (arithmetic average) varied between 1.15 and 5.64 μm, with the minimum surface roughness achieved with the machining conditions of a cutting speed of 100 m/min, feed rate of 0.30 mm/rev and depth of cut of 1.0 mm. Another important result was the presence of surface microcracks in all specimens examined by electron microscopy irrespective of the machining condition or surface roughness.


2015 ◽  
Vol 1128 ◽  
pp. 271-281 ◽  
Author(s):  
Mihai Demian ◽  
Luminita Grecu ◽  
Gabriela Demian

The aim of the present paper is to establish the optimal parameter values of the cutting regime of a milling process. The paper presents a study regarding the influence of the cutting parameters on the surface roughness of the material and also on the vibration generated by their combinations, during a processing by milling. The studies are made on samples made from S355 JR steel with a metal milling machine FUS 25, which is used also for the experiments. The samples dimensions are 210x150x16mm. For the experiments there was used a cylindrical - frontal milling tool, with 32mm diameter and 10 tooth. Basic parameters of milling processing of materials we have considered in this paper are: feed rate [mm/min]; cutting speed RPM [rot/min]; depth of cut [mm]. For each of this parameters three levels were envisaged. For a 100% accurate experiment results at least 27 experiments must be done. Using an L9 orthogonal array, the number of experiments is reduced to nine and the accurate of the method is around 99.96%. The optimal process parameters values are obtained using Taguchi method considering three situations. In the first case the goal is to get only a fine roughness for the sample. The second studied case is focused on finding a low level for the vibration generated during the milling process. The aim of the last study is to find a fine roughness and also a low level of vibration for the process. The analysis of variance (ANOVA) is applied, in all cases, in order to estimate the error variance and to rank the process parameters according to their importance.


Manufacturing a defect free (quality) product is playing a vital role in today’s globally competitive, customer oriented era. Meeting the demand of the market by producing sufficient quantity is another challenge. Achieving greater production rates without compromising on quality, increases the complexity of the task. Adopting modern manufacturing methods like CNC turning are essential to meet the above requirements. EN19 is an important member in the family of alloy steels, which has a wide variety of applications in automobile and machine tool industries. Optimization of machining parameters is crucial in obtaining the required outputs such as quality and productivity. In this work, optimization of CNC turning parameters for machining EN19 alloy steel is performed. The number of experiments was designed using face centred central composite based response surface methodology with varied independent process parameters namely cutting speed, feed and depth of cut. After designing the experiments, the performance measures such as surface roughness of the test samples and Material Removal Rate (MRR) is calculated using the existing formulae. The influence of parameters on MRR and surface roughness are determined by analysis of variance (ANOVA) and for significance interactions of the process parameters are also considered. Using MINITAB 17 software analysis is performed. Further, regression analysis has been done and second order mathematical model is obtained. Using desirability approach, optimization is carried out.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 680 ◽  
Author(s):  
Muhammad Aamir ◽  
Shanshan Tu ◽  
Majid Tolouei-Rad ◽  
Khaled Giasin ◽  
Ana Vafadar

In industries such as aerospace and automotive, drilling many holes is commonly required to assemble different structures where machined holes need to comply with tight geometric tolerances. Multi-spindle drilling using a poly-drill head is an industrial hole-making approach that allows drilling several holes simultaneously. Optimizing process parameters also improves machining processes. This work focuses on the optimization of drilling parameters and two drilling processes—namely, one-shot drilling and multi-hole drilling—using the Taguchi method. Analysis of variance and regression analysis was implemented to indicate the significance of drilling parameters and their impact on the measured responses i.e., surface roughness and hole size. From the Taguchi optimization, optimal drilling parameters were found to occur at a low cutting speed and feed rate using a poly-drill head. Furthermore, a fuzzy logic approach was employed to predict the surface roughness and hole size. It was found that the fuzzy measured values were in good agreement with the experimental values; therefore, the developed models can be effectively used to predict the surface roughness and hole size in multi-hole drilling. Moreover, confirmation tests were performed to validate that the Taguchi optimized levels and fuzzy developed models effectively represent the surface roughness and hole size.


2019 ◽  
Vol 3 (1) ◽  
pp. 28 ◽  
Author(s):  
Jimmy Karloopia ◽  
Shaik Mozammil ◽  
Pradeep Jha

Aluminum and its alloys have numerous applications in manufacturing, aerospace, and automotive industries. At elevated temperatures, they start to fail in fulfilling their roles and functions. Aluminum-based metal matrix composites (MMCs) are good alternatives for metal and alloys due to their excellent properties. However, the conventional machining of several composites shows complications for a number of reasons, such as high tool wear, poor surface roughness, high machining cost, cutting forces, etc. Numerous studies have already been conducted on the machinability of various MMCs, but the machinability of Al–Si–TiB2 composite is still not well studied. It is of utmost importance that several process parameters of conventional machining are precisely controlled as well as optimized. In this study an effort was made to optimize input parameters such as cutting speed, depth of cut, and feed to obtain well-finished final components with the minimum cutting force and tool wear. These progressions are involved with multiple response characteristics, therefore the exploration of an appropriate multi-objective optimization technique was indeed essential. The performance characteristics of cutting forces and surface roughness were considered for optimization of the machining parameters. Analysis of variance (ANOVA) was employed for the optimization and statistical analysis.


2017 ◽  
Vol 261 ◽  
pp. 321-327 ◽  
Author(s):  
Abidin Şahinoğlu ◽  
Şener Karabulut ◽  
Abdulkadir Güllü

In this study, the relationship between the spindle vibration and surface roughness was investigated and the effect of the cutting parameters on surface roughness and spindle vibration during the machining of Aluminum alloy 7075 (Al 7075) were determined. Experimental studies have been carried out on a CNC turning machine using coated cemented carbide cutting tools under dry cutting environment. L64 full factorial design of experiments was used to investigate the optimal machining parameters for spindle vibration and surface roughness. The influences of machining parameters on vibration and surface roughness were evaluated by using analysis of variance (ANOVA) and main effect plots. The results revealed that the feed rate was the most effective cutting parameters on spindle vibration and surface roughness. The machine tool vibration amplitude and surface roughness values were significantly increased with increasing cutting feed. The depth of cut and cutting speed have the least effect on the spindle vibration and indicated an insignificant effect on surface roughness. Mathematical equations were developed to predict the vibration and surface roughness values using the regression analysis.


2016 ◽  
Vol 12 (1) ◽  
pp. 177-193 ◽  
Author(s):  
M.P. Jenarthanan ◽  
A. Ram Prakash ◽  
R. Jeyapaul

Purpose – The purpose of this paper is to develop a mathematical model for metal removal rate and surface roughness through Taguchi method and analyse the influence of the individual input machining parameters (cutting speed, feed rate, helix angle, depth of cut and wt% on the responses in milling of aluminium-titanium diboride metal matrix composite (MMC) with solid carbide end mill cutter coated with nano-crystals. Design/methodology/approach – Taguchi OA is used to optimise the material removal rate (MRR) and Surface Roughness by developing a mathematical model. End Milling is used to create slots by combining various input parameters. Five factors, three-level Taguchi method is employed to carry out the experimental investigation. Fuzzy logic is used to find the optimal cutting factors for surface roughness (Ra) and MRR. The factors considered were weight percentage of TiB2, cutting speed, depth of cut and feed rate. The plan for the experiments and analysis was based on the Taguchi L27 orthogonal array with five factors and three levels. MINITAB 17 software is used for regression, S/N ratio and analysis of variance. MATLAB 7.10.0 is used to perform the fuzzy logics systems. Findings – Using fuzzy logics, multi-response performance index is generated, with which the authors can identify the correct combination of input parameters to get higher MRR and lower surface roughness value with the chosen range with 95 per cent confidence intervals. Using such a model, remarkable savings in time and cost can be obtained. Originality/value – Machinability characteristics in Al-TiB2 MMC based on the Taguchi method with fuzzy logic has not been analysed previously.


Optimization is required everywhere particularly in the industrial sector. As a part of that machining emphasized in this paper to optimize the parameters involved in the turning and drilling operation on CNC machines using the Aluminum and Stainless steel alloys. The task is initiated with design of experiments and hence the cost of operation is also reduced. During the experimental process the input parameters involved for turning were considered as cutting speed, feed and depth of cut. And for the drilling operation the input process parameters considered were speed of drill, feed. The output parameters emphasized were surface roughness and dimensional accuracy. By the investigation using the experiments, it in turn leads to an optimized environment for the operation that was carried out. Taguchi technique is a widely used and efficient technique for correlating the process parameters for an efficient and effective operation. Then the process L9 and L16 orthogonal arrays were chosen and signal to noise ratios were computed. At the end the input parameters speed, feed, depth of cut, depth of drill and outcome parameters surface roughness, material removal rate and time of operation were optimized.


Sign in / Sign up

Export Citation Format

Share Document