Algal Magnetic Nickel Oxide Nanocatalyst in Accelerated Synthesis of Pyridopyrimidine Derivatives

Author(s):  
Foad Buazar ◽  
Javad Moavi ◽  
Mohammad Hosein Sayahi

Abstract This research presents a novel biological route for the biosynthesis of nickel oxide nanoparticles (NiO NPs) using marine macroalgae extract as a reducing and coating agent under optimized synthesis conditions. XRD and TEM analyses revealed that phytosynthesized NiO NPs are crystalline in nature with a spherical shape having a mean particle size of 11±1 nm. It is found that biogenic NiO NPs is a highly efficient catalyst for benign one-pot preparation of pyridopyrimidine derivatives using aqueous reaction conditions. This environmentally friendly procedure takes considerable advantages of shorter reaction times, excellent product yields (up to 96%), magnetically reusable nanocatalyst (7 runs), low catalyst loadings, and free toxic chemical reagents.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javad Moavi ◽  
Foad Buazar ◽  
Mohammad Hosein Sayahi

AbstractThis research presents a novel biological route for the biosynthesis of nickel oxide nanoparticles (NiO NPs) using marine macroalgae extract as a reducing and coating agent under optimized synthesis conditions. XRD and TEM analyses revealed that phytosynthesized NiO NPs are crystalline in nature with a spherical shape having a mean particle size of 32.64 nm. TGA results indicated the presence of marine-derived organic constituents on the surface of NiO NPs. It is found that biogenic NiO NPs with BET surface area of 45.59 m2g−1 is a highly efficient catalyst for benign one-pot preparation of pyridopyrimidine derivatives using aqueous reaction conditions. This environmentally friendly procedure takes considerable advantages of shorter reaction times, excellent product yields (up to 96%), magnetically viable nanocatalyst (7 runs), low catalyst loadings, and free toxic chemical reagents.


Author(s):  
B.A. Katsnelson ◽  
M.P. Sutunkova ◽  
L.I. Privalova ◽  
S.N. Solovjeva ◽  
V.B. Gurvich ◽  
...  

The article presents in an experiment obtained principal results based on repeated low-level inhalation exposures of laboratory animals (white rats, outbred) to nickel oxide nanoparticles with a diameter of (23 ± 5) nm, 4 hours a day, 5 times a week for up to 10 months in a «nose only» installation. It was shown that non-specific body reactions to the action of NiO NPs include: diverse manifestations of systemic toxicity with a particularly pronounced influence on liver and kidney function, redox balance, damage to some areas of brain tissue, associated with proven movement of the nanoparticles themselves from the nasal mucosa along the olfactory tract; some cytological signs of probable development for allergic syndrome; paradoxically low severity of pulmonary pathology by pneumoconiotic type explained by a small chronic delay of nanoparticles in the lungs; the genotoxic effect of the organismal level, even at those low levels of chronic exposure, at which systemic toxicity is rather poorly. Along with that, NiO NPs also induce phase-stimulation of erythropoiesis, which is relatively specific for the toxic nickel effects.


2021 ◽  
Vol 14 (3) ◽  
pp. 443-453
Author(s):  
Mohammad Amin Jadidi Kouhbanani ◽  
Yasin Sadeghipour ◽  
Mina Sarani ◽  
Erfan Sefidgar ◽  
Saba Ilkhani ◽  
...  

2021 ◽  
pp. 074823372110009
Author(s):  
Dalia Abdel Moneim Kheirallah ◽  
Awatef Mohamed Ali ◽  
Salah Eldein Osman ◽  
Amal Mohamed Shouman

Nickel nanoparticles (Ni-NPs) have advantageous applications in the industry; however, little is known of their adverse effects on biological tissues. In the present study, the ground beetle Blaps polycresta was employed as a sensitive indicator for nickel oxide nanoparticles (NiO-NPs) toxicity. Adult male beetles were injected with six dose levels of NiO-NPs (0.01, 0.02, 0.03, 0.04, 0.05, and 0.06 mg/g body weight). Mortality was reported daily over 30 days under laboratory conditions to establish an LD50. Nickel was detected in the testicular tissues of the beetles using X-ray analysis and transmission electronic microscopy. Beetles treated with the sublethal dose of 0.02 mg/g were selected to observe molecular, cellular, and subcellular changes. Gene transcripts of HSP70, HSP90, and MT1 were found to be increased >2.5-, 1.5-, and 2-fold, respectively, in the treated group compared with the controls. Decreased gene expression of AcPC01, AcPC02, and AcPC04 (≤1.5-, ≤2-, and < 2.5-fold, respectively, vs. controls) also were reported in the treated group. Under light microscopy, various structural changes were observed in the testicular tissues of the treated beetles. Ultrastructure observations using scanning and transmission electron microscopy showed severe damage to the subcellular organelles as well as deformities of the heads and flagella of the spermatozoa. Therefore, the present study postulated the impact of NiO-NPs in an ecological model.


2020 ◽  
pp. 2888-2896
Author(s):  
Maha Fakhry Altaee ◽  
Laith A. Yaaqoob ◽  
Zaid K. Kamona

In the present study, nickel oxide nanoparticles (NiO NPs) were evaluated as an antibacterial and anticancer agent. The nanoparticles of nikel oxide were synthesized using aloe vera leaves extract and characterized with AFM (showing an average diameter of 45.11 nm), XRD and FE-SEM analyses. Three different concentrations (125, 250 and 500 µg/ml) were prepared from the synthesized NiO NPs and investigated for their potential antibacterial activity against both Enterococcus faecalis (Gram-positive bacteria) and Acinobacter baumannii (Gram-negative bacteria). While cytotoxicity and apoptotic activity were measured on both MCF-7 and AMJ13 cancer cell lines by  MTT and caspase-9 luminescence assays. The results showed that NiO NPs inhibit bacterial growth, as indicated by large inhibition zones  against both tested bacteria, with all studied concentrations. Moreover, the results of cytotoxicity and caspase-9 activity assays were in concordance with those of  antibacterial activity, showing high cytotoxicity and apoptotic effects against both of the studied cancer cell lines and with all the tested concentrations of NiO NPs. Both the antibacterial and anticancer activities of NiO NPs were dose-dependent. 


2018 ◽  
Vol 917 ◽  
pp. 167-171 ◽  
Author(s):  
Najmawati Sulaiman ◽  
Yoki Yulizar

Green synthesis of nickel oxide nanoparticles (NiO NPs) usingPhysalisangulataleaf extract (PALE) as weak base sources and stabilizing agents has been reported. Chemical bonding and vibration spectroscopy, crystallographic structure, optical band gap, particle size and microscopic studies of NiO NPs were also investigated. Ni-O vibration modes of NiO NPs were analyzed by FTIR and Raman instrument at ~400 and ~900 cm-1wavenumber. XRD pattern of NiO NPs confirmed cubic crystal structure with space groupFm-3m.Optical band gap of NiO NPs determined by using Tauc plot method was about 3.42 eV. Particle size analyzer showed size distribution of NiO NPs was 64.13 nm which confirm NiO formed in nanoscale. Electron microscopic studies of NiO NPs were observed by using scanning electron microscopy and transmission electron microscopy.


2017 ◽  
Vol 41 (11) ◽  
pp. 657-660 ◽  
Author(s):  
Mohammad Reza Salari ◽  
Mohammad H. Mosslemin ◽  
Alireza Hassanabadi

A one-pot, efficient synthesis of 11 novel 2,3-diacylated trans-tetrahydrobenzofuran-4-one derivatives has been achieved via a three-component condensation of a N-(4-halophenacyl)-pyridinium bromide, a cyclic 1,3-diketone such as 5,5-dimethyl-1,3-cyclohexanedione (dimedone) or cyclohexane-1,3-dione and an arylglyoxal in the presence of catalytic amounts of 1,4-diaza-bicyclo[2.2.2]octane (DABCO) in water under reflux conditions. The attractive features of the method are excellent yields and high purity, short reaction times, easy work-up, and use of an inexpensive and non-toxic catalyst.


2017 ◽  
Vol 41 (3) ◽  
pp. 139-142 ◽  
Author(s):  
Maryam Salari ◽  
Alireza Hassanabadi ◽  
Mohammad H. Mosslemin

A green and efficient synthesis of the trans-6-(4-chlorobenzoyl)-7-(aryl)-1,3-dimethyl-6,7-dihydrofuro[3,2-d]pyrimidine-2,4-diones has been achieved via a three-component, one-pot condensation of 2-[2-(4-chlorophenyl)-2-oxoethyl)]isoquinolinium bromide with 1,3-dimethylbarbituric acid and an aromatic aldehyde in the presence of catalytic amounts of choline hydroxide in water under reflux conditions. This gives trans-6-(4-chlorobenzoyl)-7-(aryl)-1,3-dimethyl-6,7-dihydrofuro[3,2-d]pyrimidine-2,4-diones in excellent yield and in short reaction times.


2019 ◽  
Vol 17 (12) ◽  
pp. 977-981
Author(s):  
K. Subashini ◽  
S. Prakash ◽  
V. Sujatha

The catalytic, optical and thermal properties are based on the size of the nanoparticles. Nickel oxide nanoparticles have unique optical property and excellent antibacterial activity. The present study aims for the synthesis of Nickel oxide nanoparticles (NiO NPs) using Sterculia foetida (S. foetida) leaf extract as reducing agent by solution combustion method. The synthesized Nickel oxide nanoparticles (NiO NPs) were confirmed by UV-Visible spectroscopy (UV) with the peak at 370 nm and at the temperature of 450 ± 10 °C, Fourier transform infrared (FTIR) wavelength was observed at 1418 cm–1 1027 cm–1 shows C–O stretching vibration and at 507 cm–1 vibration of Ni–O bond found. Crystalline structure and the formation of monoclinic phase revealed by Powder X-ray diffraction (PXRD) pattern, the percentage of nickel and oxygen of NiO NPs were confirmed with EDAX analysis. The Scanning electron microscopy (SEM) and Transmission electron microscope (TEM) images indicate the shape of Nickel oxide nanoparticles (NiO NPs) with the size range of 10–51 nm. Staphylococcus aureus (S. aureus) (Gram positive) and Escherichia coli (E. coli) (Gram negative) bacteria's were taken to study about antibacterial activity against the green synthesized Nickel oxide nanoparticles (NiO NPs). The Nickel oxide nanoparticles have pharmaceutical and other biomedical applications.


2017 ◽  
Vol 10 (9) ◽  
pp. 3197-3202 ◽  
Author(s):  
Davood Azarifar ◽  
Younes Abbasi ◽  
Omolbanin Badalkhani

Leucine, a naturally occurring α-amino acid, has been found as an effective catalyst to effect the one-pot three-component condensation reaction between aromatic aldehydes, malononitrile and 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Various 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile derivatives are conveniently prepared by these reactions in excellent yields. High yields, short reaction times, simple work-up, use of green and naturally occurring catalyst and solvent are the main merits of the present protocol. 


Sign in / Sign up

Export Citation Format

Share Document