scholarly journals Distribution and Drug Sensitivity of Pathogenic Bacteria in Diabetic Foot Ulcer Patients With Necrotizing Fasciitis at a Diabetic Foot Center in China

Author(s):  
Xuemei Li ◽  
Zhipeng Du ◽  
Ziwei Tang ◽  
Qin Wen ◽  
Qingfeng Cheng ◽  
...  

Abstract Background: When a diabetic foot ulcer (DFU) is complicated by necrotizing fasciitis (DNF), this may increase the risk for amputation and mortality, making DNF treatment more complicated, and may eventually lead to amputation and mortality. DNF treatment must include the appropriate antibiotic intervention. However, studies on the distribution and drug sensitivity of pathogenic bacteria in DNF patients remain lacking. This study investigated the distribution and susceptibility of pathogenic bacteria in DNF patients, and provides empirical antibacterial guidance for the clinic.Methods: In a single diabetic foot center, the results from microbial cultures and drug susceptibility tests of patients with DNF from October 2013 to December 2020 were collected and analyzed.Results: A total of 101 DNF patients were included in this study, of whom 94 had positive culture test results. A total of 124 pathogens were cultured, including 76 Gram-positive bacterial strains, 42 Gram-negative bacterial strains, and six fungal strains. Polymicrobial infections accounted for 26.7% and monomicrobial infections accounted for 66.3%. Staphylococcus aureus was the most common bacterium isolated, followed by Enterococcus faecalis and Streptococcus agalactiae. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Proteus mirabilis were the most common Gram-negative bacteria. Thirty-five strains of multi-drug resistant (MDR) bacteria were isolated, representing 28.2% of the total isolates. Gram-positive bacteria were more sensitive to levofloxacin, moxifloxacin, vancomycin, teicoplanin, tigecycline, and linezolid, while Gram-negative bacteria were more sensitive to amikacin, piperacillin/tazobactam, cefoperazone/sulbactam, ceftazidime, cefepime, imipenem, and meropenem. Conclusions: Gram-positive bacteria were the main bacteria isolated from DNF patients. The bacterial composition, the proportion of MDR bacteria among the pathogens, and high risk for amputation should be fully considered in the initial empirical medication, and broad-spectrum antibacterials are recommended.

Author(s):  
Adnal K. P. Husein Putra ◽  
Sri Sundari

Background: This study provides an overview of diabetic ulcer infection, antibiotic susceptibility patterns, the most common types of antibiotics, factors influence in antibiotics administrations, and verifying the guideline used of antibiotics.Methods: The research used descriptive analysis combined with interviews. The study was starting from February-March 2021. Eighty-six diabetic ulcer patients were selected considering the inclusion and exclusion criteria. We interviewed seven doctors.Results: 71 bacterias were found with a gram-negative bacteria count of 80.3%- higher than gram-positive bacteria (19.7%). The most common gram-negative bacteria found are Escherichia coli (12.7%) and show the most heightened sensitivity with imipenem (80.7%), while cefuroxime and trimethoprim-sulfamethoxazole show the highest resistance (64.9%). The most common gram-positive bacteria found are Staphylococcus aureus (14.1%), and vancomycin shows the most heightened sensitivity (100%), while penicillin shows the highest resistance (71.4%). The most common single antibiotic administration was ceftriaxone, as well as a combination of two antibiotics, namely ceftriaxone and metronidazole.Conclusions: Escherichia coli was the most gram-negative bacteria, which has the highest sensitivity with imipenem, while Staphylococcus aureus was the most gram-positive bacteria, which has the most heightened sensitivity with vancomycin. The most common single antibiotic administration was ceftriaxone, as well as a combination of two antibiotics, ceftriaxone and metronidazole. Factors that influence antibiotics administration are patient condition, susceptibility testing, training, and advice from colleagues. Every doctor uses different guidelines for diabetic foot ulcer.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


2021 ◽  
Vol 12 (2) ◽  
pp. 1824-1834

Secondary metabolites from the shoots and roots of three Rumex species collected from three different habitats were investigated (Rumex dentatus collected from cultivated land, R. pictus collected from the coastal desert and R. vesicarius collected from the inland desert) and tested for antioxidant activity as well as for anti-microbial activity against some human pathogenic bacteria. The present study indicated that the quantitative analysis of shoot and root extracts of three Rumex spp. were found to be rich in tannins and phenolics composition. The aerial parts of the three plants exhibited the highest significant values compared to the root parts. The MeOH extracts of Rumex species showed adequate antioxidant activity, wherein the IC50 values of the MeOH from the cultivated sample was 41.61 and 31.31 mg mL-1, coastal samples were 34.99 and 23.99 mg mL-1, while the sample of inland showed IC50 value of 41.59 and 31.67 mg mL-1, for root and shoot, respectively. Furthermore, using a filter paper disc assay, the MeOH extracts of the three Rumex species showed a substantial anti-microbial inhibitory effect on the growth of 10 pathogenic bacteria. According to sensitivity, the tested organisms could be sequenced as following: E. coli < K. pneumoniae ˂ S. typhi < P. aeruginosa for Gram-negative bacteria and B. subtilis < S. pneumoniae ˂ L. monocytoyenes < S. epidermis < S. aureus < B. cereus for Gram-positive bacteria. In addition, the antibacterial performance of R. dentatus root and R. vesicarius shoot MeOH extract is 100% broad spectrum against Gram-negative bacteria. A shoot of R. dentatus and R. pictus MeOH extract against Gram-positive bacteria is 83.3% broad spectrum. A further study is recommended for more characterization of the major compounds and assesses their efficiency and biosafety.


2019 ◽  
Vol 6 (1) ◽  
pp. 63-72
Author(s):  
Abdelali Merah ◽  
Abdenabi Abidi ◽  
Hana Merad ◽  
Noureddine Gherraf ◽  
Mostepha Iezid ◽  
...  

Abstract Interest in nanomaterials, especially metal oxides, in the fight against resistant and constantly changing bacterial strains, is more and more expressed. Their very high reactivity, resulting from their large surface area, promoted them to the rank of potential successors of antibiotics. Our work consisted of the synthesis of zinc oxide (ZnO) and copper oxide (CuO) in the nanoparticle state and the study of their bactericidal effect on various Gram-negative and Gram-positive bacterial strains. The nanoparticles of metal oxides have been synthesized by sol-gel method. Qualitative analysis and characterization by UV / Visible and infrared spectrophotometry and X-ray diffraction confirmed that the synthetic products are crystalline. The application of the Scherrer equation allows to determine the size of the two metal oxides, namely: 76.94 nm for ZnO and 24.86 nm for CuO. The bactericidal effect of ZnO and CuO nanoparticles was tested on Gram-positive bacteria (Staphylococcus aureus, Staphylococcus hominis, Staphylococcus haemolyticus, Enterococcus facials) and Gram-negative bacteria (Escherichia coli, Schigella, Klepsiella pneumoniae and Pseudomonas aeruginosa). The results indicate that the tested metal oxides nanoparticles have an effect that varies depending on bacterial species. Indeed, Gram-positive bacteria show greater sensitivity to ZnO nanoparticles whereas Gram-negative bacteria are more sensitive to CuO nanoparticles.


2021 ◽  
Vol 12 (1) ◽  
pp. 160-168
Author(s):  
Steffy Ligi Binu ◽  
Abhishek Chandran ◽  
Chaitrashree ◽  
Abhijith Shetty ◽  
Sharad Chand ◽  
...  

The current study was undertaken to analyze the bacteriological profile among diabetic foot ulcer patients and to determine the antibiotic susceptibility and resistance pattern of the organisms isolated. This was a prospective observational study conducted among 102 patients for six months. All patients, aged above 18 years diagnosed with diabetic foot ulcers and performed with culture and sensitivity tests in the department of general surgery, were enrolled in the study. All the relevant details of the study were collected and analyzed. Out of 102 patients enrolled, 72 were males and 30 were females. The majority of the bacteria that were isolated from the culture samples were found to be gram-negative, 119 (79.33%) and 31 (20.97%) were found to be gram-positive. Methicillin-resistant coagulase-negative Staphylococcus was the most frequently isolated gram-positive micro-organism. It was found to have more sensitivity to both vancomycin and teicoplanin (100%) whereas it showed high resistance to benzylpenicillin (84.6%). Among various gram-negative organisms, Pseudomonas aeruginosa was the most commonly isolated. It showed high sensitivity to doripenem (70.9%) and was found to be more resistant to levofloxacin (51.6%). Our study concluded on the predominance of gram-negative bacteria among the enrolled patients. Among the 22 different types of bacteria identified, Pseudomonas aeruginosa was the most frequently isolated species.


Author(s):  
Liong Boy Kurniawan ◽  
Tenri Esa ◽  
Nurhayana Sennang

Diabetic foot ulcer is a common complication of diabetic disease which causes morbidity and foot amputation. One major pathogenesis is infection. Microbes which infect are varied. The use of inappropriate antimicrobials can or may cause drugs resistance. Data of microbes pattern and sensitivity test is important and may guide the clinician in giving the initial therapy. The aim of this retrospective study was to know the characteristics, microbial pattern, and the sensitivity to antimicrobial drugs of 31 diabetic foot ulcer patients who were hospitalized at Wahidin Sudirohusodo Hospital, Makassar in the period of January 2009 until June 2010. The study results showed the age mean was 54.06±12.4 years old, and the onset of diabetes mellitus was 7.62±5.77 years. The common microbes were gram negative bacteria (73.52%) including Enterobacter agglomerans, Proteus mirabilis and Klebsiella pneumonia, while the most common gram positive microbe was Streptococcus sp. Gram positive microbes were sensitive to meropenem, ceforoxim and amoxilin, while Gram negative microbes were sensitive to meropenem. Based on this study, the researchers concluded that the most common microbes which infect the feet were gram negative microbes. Gram positive microbes were still sensitive to meropenem, ceforoxim and amoxilin. Gram negative microbes were sensitive to meropenem.


Author(s):  
Ranganathan Kapilan

Wide range of plant extracts are used for medicinal purposes as they are very cheap, efficient, harmless and do not cause any side effects. Spices are parts of different plants and they add special aroma and taste to the food preparations. The aim of the study was to determine the antimicrobial activity of some important naturally grown spices against gram positive and gram negative pathogenic bacteria. Antibacterial activity of the spices was tested against gram positive bacteria Bacillus pumilus, Bacillus cereus and Staphylococcus aureus and gram negative bacteria Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa using aqueous, ethanolic, methanolic and liquid nutrient extracts. Among all the extracts tested alcoholic extracts of Cardamom (Elettaria cardamom), clove (Eugenia caryophyllus) and lemongrass (Cymbopogoncitratus) showed maximum antimicrobial activity against gram negative bacteria while alcoholic extract of Cardamom (Elettaria cardamom) and lemongrass (Cymbopogoncitratus) showed maximum activity against gram positive bacteria. All the spices tested in this study proved that they have antibacterial activity and the maximum activity index (1.39) was exhibited by the ethanol extract of cardamom against E.coli.


2014 ◽  
Vol 19 (1) ◽  
pp. 111-114
Author(s):  
Shashi Chauhan ◽  
R. K. Chauhan

The antagonista activity of eight isolaies of penicillia bas been studied against 13 pathogenic organisms, which included 6 Gram-positive bacteria, 4 Gram-negative bacteria and 3 yeasts.


Author(s):  
Shipra Baluja ◽  
Sumitra Chanda

Some Schiff bases of pyrazole and 4-amino antipyrine have been synthesized. The antibacterial screening of these synthesized compounds was done in dimethyl formamide against four Gram positive bacteria viz.Bacillus cereus, Staphylococcus aureus, Staphylococcus epidermidids and Micrococcus luteus, and three Gram negative bacteria viz. Proteus mirabilis, Escherichia coli and Klebsiella aerogenes. It is observed that in comparison to Schiff bases of 4-amino antipyrine, pyrazole Schiff bases are better for inhibition for these selected Gram positive and Gram negative bacterial strains.


Sign in / Sign up

Export Citation Format

Share Document