scholarly journals Tumor-Specific Catalysis-Mediated Enhanced Chemodynamic Therapy in Synergy with Mitophagy Inhibition Improves Therapeutic Efficacy in Endometrial Cancer

Author(s):  
Xiaodi Gong ◽  
Jing Wang ◽  
Linlin Yang ◽  
Lijuan Li ◽  
Xiao Sun ◽  
...  

Abstract BackgroundChemodynamic therapy (CDT) relies on tumor microenvironment (e.g. high H2O2 level) responsive Fenton-like reactions to produce hydroxyl radicals (·OH) against tumors. However, endogenous H2O2 is insufficient for effective chemodynamic reactions.ResultsAn NAD(P)H: quinone oxidoreductase 1 (NQO1)highCatalase (CAT)low therapeutic window for the use of NQO1 bioactive drug β-lapachone (β-Lap) was firstly identified in endometrial cancer (EC). Accompanied by NADH depletion, β-Lap was catalyzed by NQO1 to produce excess H2O2 initiating oxidative stress, which selectively suppressed NQO1high EC cell proliferation, induced DNA double-strand breaks and promoted apoptosis. SiRNA-mediated NQO1 knockdown or dicoumarol rescued NQO1high EC cells from β-Lap-induced cytotoxicity. Arginine-glycine-aspartic acid (RGD)-functionalized iron-based metal organic frameworks-MOF(Fe) further promoted the conversion of accumulated H2O2 into highly oxidative ·OH, and in turn exacerbated the oxidative damage to RGD-positive target cells. Mitophagy inhibition by Mdivi-1 blocked a powerful antioxidant defense approach, ultimately ensuring the antitumor efficacy of stepwise amplified ROS signals. The tumor growth inhibition rate was about 85.92%.ConclusionsTumor specific chemotherapy in combination with CDT-triggered therapeutic modality presented unprecedented therapeutic advantages for the treatment of NQO1+ advanced type I or type II EC.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1864
Author(s):  
Isabel Pagani ◽  
Guido Poli ◽  
Elisa Vicenzi

Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.


1979 ◽  
Vol 150 (6) ◽  
pp. 1310-1322 ◽  
Author(s):  
M Lipinski ◽  
W H Fridman ◽  
T Tursz ◽  
C Vincent ◽  
D Pious ◽  
...  

Peripheral T lymphocytes from patients with infectious mononucleosis (IM) are sensitized in vivo against the Epstein-Barr virus (EBV). The expression of HLA-A, B, or C molecules at the target cell surface is necessary for the cytotoxic reaction because (a) EBV-positive Daudi cells lacking HLA-A, B, and C determinants are resistant to anti-EBV T-cell lysis, (b) cytolysis of EBV-positive target cells can be consistently inhibited by anti-HLA-A, B, and C and anti-beta 2 microglobulin antibodies. However, no evidence for allogeneic restriction in this system was apparent as (a) cytotoxic T lymphocytes (CTL) from one given individual could exert a cytotoxicity of a similar magnitude on different EBV-positive target cells, regardless of the number of HLA-A or B specificities shared by the effectors and targets; (b) CTL from IM patients were able to kill target cells without any HLA-A or B antigen in common; and (c) T5-1 variants lacking one or two HLA antigens at the A, B, or D locus are killed to the same extent as the parental cells. 7 of the 9 IM patients with detectable circulating anti-EBV CTL carried the HLA-A1 antigen, whereas none of the 16 IM patients lacking detectable peripheral CTL were HLA-A1 positive (mean specific lysis of T5-1 target cells by T cells from HLA-A1 positive patients: 29.3 vs. 0.6% in HLA-A1-negative patients) (P less than 10(-9)). These data suggest an HLA-A1-linked gene control of the magnitude of the anti-EBV CTL response. Thus, the HLA region appears to act at two different level sin the T-cell-mediated lysis of EBV-infected cells by controlling first, the development of anti-EBV and second, the expression of HLA-A, B, and C molecules involved as recognition structures at the target cell surface.


2006 ◽  
Vol 80 (17) ◽  
pp. 8351-8361 ◽  
Author(s):  
Jason Botten ◽  
Jeff Alexander ◽  
Valerie Pasquetto ◽  
John Sidney ◽  
Polly Barrowman ◽  
...  

ABSTRACT Recovery from Lassa virus (LASV) infection usually precedes the appearance of neutralizing antibodies, indicating that cellular immunity plays a primary role in viral clearance. To date, the role of LASV-specific CD8+ T cells has not been evaluated in humans. To facilitate such studies, we utilized a predictive algorithm to identify candidate HLA-A2 supertype epitopes from the LASV nucleoprotein and glycoprotein precursor (GPC) genes. We identified three peptides (GPC42-50, GLVGLVTFL; GPC60-68, SLYKGVYEL; and GPC441-449, YLISIFLHL) that displayed high-affinity binding (≤98 nM) to HLA-A*0201, induced CD8+ T-cell responses of high functional avidity in HLA-A*0201 transgenic mice, and were naturally processed from native LASV GPC in human HLA-A*0201-positive target cells. HLA-A*0201 mice immunized with either GPC42-50 or GPC60-68 were protected against challenge with a recombinant vaccinia virus that expressed LASV GPC. The epitopes identified in this study represent potential diagnostic reagents and candidates for inclusion in epitope-based vaccine constructs. Our approach is applicable to any pathogen with existing sequence data, does not require manipulation of the actual pathogen or access to immune human donors, and should therefore be generally applicable to category A through C agents and other emerging pathogens.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Christof Fellmann ◽  
I-Li Tan ◽  
Alexendar Perez ◽  
Rachel Lew ◽  
Karen Zhu ◽  
...  

Abstract Glioblastoma (GBM) is the most common and lethal primary brain tumor in adults 1. Despite multimodal treatment regimens including surgical resection, radio- and chemotherapy, the growth of residual tumor often results in therapy resistance and ultimately death. GBMs are highly diffuse and exhibit extensive intratumoral heterogeneity 2,3, confounding diagnostic efforts and presenting opportunities for therapy evasion. Therefore, innovative treatment paradigms that can efficiently eliminate GBM cells irrespective of their mutational and epigenetic profile are urgently needed. CRISPR technologies have revolutionized medicine by enabling targeted genome editing through RNA-guided introduction of DNA double-strand breaks 4,5. Here, we show that CRISPR-Cas9 mediated genome fragmentation through targeting of highly repetitive loci, termed “genome shredding”, enables rapid and robust elimination of GBM cells. We characterized genome shredding across mammalian and vertebrate cells, and identified optimal repetitive pan-vertebrate and species-specific loci. Genome shredding is equally effective in temozolomide (TMZ)-sensitive and -resistant GBM cells, and multi-cycle treatment regimens are feasible. Importantly, when deployed in intracerebral GBM xenografts through local delivery, CRISPR-Cas9 genome shredding efficiently eliminated all targeted cells. Together, genome shredding enables the rapid and efficient fragmentation of a target cell’s genome and subsequent DNA damage-induced cell death. This provides an innovative treatment paradigm that is independent of a tumor’s mutational and epigenetic profile and leverages CRISPR-Cas9 as a breakthrough therapeutic modality for GBM.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Béatrice Clémenceau ◽  
Sandrine Valsesia-Wittmann ◽  
Anne-Catherine Jallas ◽  
Régine Vivien ◽  
Raphaël Rousseau ◽  
...  

The present work was designed to compare two mechanisms of cellular recognition based on Ab specificity: firstly, when the anti-HER2 mAb trastuzumab bridges target cells and cytotoxic lymphocytes armed with a Fc receptor (ADCC) and, secondly, when HER2 positive target cells are directly recognized by cytotoxic lymphocytes armed with a chimeric antigen receptor (CAR). To compare these two mechanisms, we used the same cellular effector (NK-92) and the same signaling domain (FcεRIγ). The NK-92 cytotoxic cell line was transfected with either a FcγRIIIa-FcεRIγ(NK-92CD16) or a trastuzumab-based scFv-FcεRIγchimeric receptor (NK-92CAR). In vitro, the cytotoxic activity against HER2 positive target cells after indirect recognition byNK-92CD16was always inferior to that observed after direct recognition byNK-92CAR. In contrast, and somehow unexpectedly, in vivo, adoptive transfer ofNK-92CD16+ trastuzumab but not ofNK-92CARinduced tumor regression. Analysis of the in vivo xenogeneic system suggested that the human CH2-CH3 IgG2 used as a spacer in our construct was able to interact with the FcR present at the cell surface of the few NSG-FcR+ remaining immune cells. This interaction, leading to blockage of theNK-92CARin the periphery of the engrafted tumor cells, stresses the critical role of the composition of the spacer domain.


2019 ◽  
Vol 152 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Beverly Long ◽  
Jenna Lilyquist ◽  
Amy Weaver ◽  
Chunling Hu ◽  
Rohan Gnanaolivu ◽  
...  

2018 ◽  
Vol 219 (4) ◽  
pp. 381.e1-381.e10
Author(s):  
Stephen Fiascone ◽  
Valery A. Danilack ◽  
Mary J. Kao ◽  
Michael Cohen ◽  
Kamaljeet Singh ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A159-A159
Author(s):  
Michael Whang ◽  
Ming-Hong Xie ◽  
Kate Jamboretz ◽  
Hadia Lemar ◽  
Chao Guo ◽  
...  

BackgroundPeripheral blood natural killer (NK) cells are mature cytotoxic innate lymphocytes possessing an inherent capacity for tumor cell killing, thus making them attractive candidates for adoptive cell therapy. These NK cells are also amenable to CRISPR and chimeric antigen receptor (CAR) genomic engineering for enhanced functions. Moreover, NK cells possess an inherent capacity for off-the-shelf therapy since they are not known to cause graft-versus-host disease, unlike T cells. Presently, approved CAR cell therapy is custom-made from each patient‘s own T cells, a process that can limit patient pool, narrow therapeutic window, and contribute to product variability. In this study, we investigate whether peripheral blood NK cells from a selected donor can be edited, engineered, and expanded sufficiently for off-the-shelf use in a wide patient population.MethodsUsing the CRISPR/Cas9 system, we knocked out CISH expression in isolated peripheral blood NK cells from 3 healthy donors. Subsequently, we expanded edited NK cells by using IL-2 and sequential stimulations using NKSTIM, a modified K562 stimulatory cell line expressing membrane-bound form of IL-15 (mbIL-15) and 4-1BBL. IL-12 and IL-18 were added twice during expansion to drive memory-like NK cell differentiation. We transduced the expanded NK cells to express engineered CD19-targeted CAR and mbIL-15 during an interval between the first and second NKSTIM pulses. We assessed NK cell cytotoxicity against Nalm6 target cells by IncuCyte.ResultsIsolated peripheral blood NK cells from 3 healthy donors were successfully edited using CRISPR/Cas9, engineered to express high levels of CAR, extensively expanded using a series of NKSTIM pulses in the presence of IL-2, and differentiated into memory-like NK cells using IL-12 and IL-18. Interestingly, NK cells from the 3 donors exhibited distinct outcomes. NK cells from one donor reached a peak expansion limit of approximately 7-million-fold before undergoing contraction whereas NK cells from two donors continued to expand over the length of the study surpassing 100-million-fold expansion, without appearing to have reached a terminal expansion limit. At the end of the study, NK cells from one donor exceeded 1-billion-fold expansion and maintained 88% cytolytic activity compared to Nkarta’s standard process control in a 72-hour IncuCyte assay.ConclusionsIn this study, we demonstrate that healthy donor-derived peripheral blood NK cells are capable of expanding over billion-fold while maintaining potency. These results provide a rationale for the development of off-the-shelf CAR NK cell therapies using NK cells from donors selected to provide optimal product characteristics.Ethics ApprovalHuman samples were collected with written informed consent by an approved vendor.


Sign in / Sign up

Export Citation Format

Share Document