scholarly journals Long Noncoding RNA MIR210HG is Induced by Hypoxia-inducible Factor 1α and Promotes Cervical Cancer Progression

Author(s):  
Xiao-lin Hu ◽  
Xia-tong Huang ◽  
Jia-ni Zhang ◽  
Jie Liu ◽  
Li-jun Wen ◽  
...  

Abstract Background:Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play essential roles in various types of cancer, especially the ability of tumor cells to adapt to hypoxia conditions. However, only a few of them have been experimentally validated in cervical squamous cell carcinoma (CSCC). Method: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to confirm the expression of MIR210HG in CSCC tissues compared with matched non-tumor tissues, and analyze its clinical significance. In vitro, RNA interference (siRNA) or overexpression plasmid was used to investigate the biological function and underlying mechanism of MIR210HG in cervical carcinogenesis. In vitro, cell proliferation and metastasis were evaluated by Cell Counting Kit-8 (CCK-8) and transwell assay, respectively. Furthermore, tumor growth and metastasis were evaluated in vivo using a xenogenous subcutaneously implant or a pulmonary metastasis model. Immunohistochemical staining or immunoblotting analysis was carried out to detect protein expression.Results:In the current study, we identified a hypoxia-induced lncRNA MIR210HG was excessively expressed in CSCC tissues and regulated by human papillomavirus (HPV) type 16 E6 and E7 via hypoxia-inducible factor 1α (HIF-1α). Functional assays revealed the role of MIR210HG in promoting proliferation, migration and invasion of CSCC cells in vitro under normoxia as well as hypoxia conditions. Meanwhile, stable MIR210HG silencing dramatically repressed tumor growth and pulmonary metastasis in vivo. Mechanistically, the depletion of MIR210HG or HIF-1α decreased each other’s expression level, while silencing MIR210HG or HIF-1α respectively downregulated the expression levels of phosphoglycerate kinase 1 (PGK1), one of key metabolic enzymes in the glycolysis pathway. Furthermore, decreased expression of PGK1 by HIF-1α knockdown was reversed through the overexpression of MIR210HG. Also, we demonstrated HIF-1α can activate the transcription of MIR210HG via binding its promoter. Conclusions: Taken together, these results expand our understanding of the cancer-associated functions of hypoxia-induced lncRNAs, and highlight MIR210HG forms a feedback loop with HIF-1α contributing to cervical carcinogenesis, with potential implications for therapeutic targeting.

Author(s):  
Hengzhou Lin ◽  
Dahui Zuo ◽  
Jiabin He ◽  
Tao Ji ◽  
Jianzhong Wang ◽  
...  

The long noncoding RNA WEE2 antisense RNA 1 (WEE2-AS1) plays anoncogenic role in hepatocellular carcinoma and triple negative breast cancerprogression. In this study, we investigated the expression and roles of WEE2-AS1 inglioblastoma (GBM). Furthermore, the molecular mechanisms behind the oncogenicactions of WEE2-AS1 in GBM cells were explored in detail. WEE2-AS1 expressionwas detected using quantitative real-time polymerase chain reaction. The roles ofWEE2-AS1 in GBM cells were evaluated by the Cell Counting Kit-8 assay, flowcytometric analysis, and Transwell cell migration and invasion assays, and tumorxenograft experiments. WEE2-AS1 expression was evidently enhanced in GBM tissuesand cell lines compared with their normal counterparts. An increased level of WEE2-AS1 was correlated with the average tumor diameter, Karnofsky Performance Scalescore, and shorter overall survival among GBM patients. Functionally, depleted WEE2-AS1 attenuated GBM cell proliferation, migration, and invasion in vitro, promoted cellapoptosis, and impaired tumor growth in vivo. Mechanistically, WEE2-AS1 functionedas a molecular sponge for microRNA-520f-3p (miR-520f-3p) and consequentlyincreased specificity protein 1 (SP1) expression in GBM cells. A series of recoveryexperiments revealed that the inhibition of miR-520f-3p and upregulation of SP1 couldpartially abrogate the influences of WEE2-AS1 downregulation on GBM cells. Inconclusion, WEE2-AS1 can adsorb miR-520f-3p to increase endogenous SP1expression, thereby facilitating the malignancy of GBM. Therefore, targeting theWEE2-AS1-miR-520f-3p-SP1 pathway might be a promising therapy for themanagement of GBM in the future.


2021 ◽  
Author(s):  
Wei Zhu ◽  
Xiangming Xiao ◽  
Jinqin Chen

Abstract Background: To date, long intergenic nonprotein coding RNA 1132 (LINC01132) expression in epithelial ovarian cancer (EOC) and the underlying mechanisms have not been explored. In this study, we measured LINC01132 expression in EOC and assessed the effects of LINC01132 on the malignant behaviours of EOC cells in vitro and in vivo. Additionally, mechanistic studies were performed to elucidate the molecular events that occurred downstream of LINC01132 in EOC cells. Methods: Reverse-transcription quantitative PCR (RT-qPCR) was utilized to verify LINC01132 expression in EOC. The effects of LINC01132 on the malignant behaviours of EOC cells were determined using a Cell Counting Kit-8 assay, flow cytometry analysis, cell migration and invasion assays and a tumour xenograft model. The targeting interaction among LINC01132, microRNA-431-5p (miR-431-5p) and SRY-Box 9 (SOX9) was verified by RNA immunoprecipitation and luciferase reporter assays. Results: LINC01132 was overexpressed in EOC and was obviously associated with poor patient prognosis. Functionally, cell experiments revealed that LINC01132 depletion could inhibit EOC cell proliferation, migration and invasion and promote cell apoptosis in vitro. Additionally, loss of LINC01132 attenuated tumour growth in vivo. Mechanistically, LINC01132 acted as a competing endogenous RNA by sequestering miR-431-5p and thereby increasing SOX9 expression in EOC cells, forming a LINC01132/miR-431-5p/SOX9 axis. In rescue experiments, miR-431-5p inhibition or SOX9 re-expression eliminated the inhibitory effects of LINC01132 silencing on the pathological behaviours of EOC cells. Conclusions: Generally, LINC01132 exhibited oncogenic activities in EOC cells in vitro and in vivo by regulating the outcome of the miR-431-5p/SOX9 axis, providing an effective target for EOC diagnosis, therapy and prognosis evaluation.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Xiaohui Zhang ◽  
Fangyuan Li ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

AbstractLong noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA–MB-231 and MDA–MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.


Author(s):  
Xia Zhao ◽  
Weilei Dong ◽  
Guifang Luo ◽  
Jing Xie ◽  
Jie Liu ◽  
...  

Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, have been identified as critical regulators in human carcinogenesis. Here, we investigated the precise actions of hsa_circ_0009035 in the progression and radioresistance of cervical cancer (CC). The levels of hsa_circ_0009035, microRNA (miR)-889-3p and homeobox B7 (HOXB7) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease R (RNase R) and Actinomycin D assays were used to assess the stability of hsa_circ_0009035. Cell proliferation, cell cycle progression, apoptosis, migration and invasion were gauged by the Cell Counting Kit-8 (CCK-8), flow cytometry and transwell assays, respectively. Cell colony formation and survival were determined by the colony formation assay. Targeted correlations among hsa_circ_0009035, miR-889-3p and HOXB7 were examined by the dual-luciferase reporter, RNA immunoprecipitation (RIP) or RNA pull-down assay. Animal studies were performed to evaluate the impact of hsa_circ_0009035 on tumor growth. We found that hsa_circ_0009035 was highly expressed in CC tissues and cells, and it was associated with the radioresistance of CC patients. Moreover, the silencing of hsa_circ_0009035 inhibited CC cell proliferation, migration, invasion, and enhanced apoptosis and radiosensitivity in vitro and weakened tumor growth in vivo. Mechanistically, hsa_circ_0009035 directly targeted miR-889-3p by binding to miR-889-3p, and hsa_circ_0009035 modulated HOXB7 expression through miR-889-3p. HOXB7 was a functional target of miR-889-3p in regulating CC progression and radioresistance in vitro, and hsa_circ_0009035 modulated CC progression and radioresistance in vitro by miR-889-3p. Our current study first identified hsa_circ_0009035 as an important regulation of CC progression and radioresistance at least in part through targeting the miR-889-3p/HOXB7 axis, highlighting its significance as a potential therapeutic target for CC treatment.


2021 ◽  
Author(s):  
Xiaoyun Ma ◽  
Meile Mo ◽  
Chao Tan ◽  
Jennifer Hui Juan Tan ◽  
Huishen Huang ◽  
...  

Abstract BackgroundLong non-coding RNAs (lncRNAs) have been proven to be involved in the development of hepatocellular carcinoma (HCC). We aimed to investigate the function of LINC01146 in HCC.MethodsThe expression of LINC01146 in HCC tissues was explored via the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and was verified using quantitative real-time polymerase chain reaction (qRT-PCR) in our HCC cohort. Kaplan-Meier analysis was used to assess the relationship between LINC01146 and the prognosis of HCC patients. Cell Counting Kit 8, colony formation assays, transwell assays, flow cytometric assays, and tumor formation models in nude mice were conducted to reveal the effects of LINC01146 on HCC cells both in vitro and in vivo. Bioinformatic methods were used to explore the possible potential pathways of LINC01146 in HCC.ResultsLINC01146 was significantly decreased in HCC tissues compared with adjacent normal tissues and it was found to be related to the clinical presentations of malignancy and the poor prognosis of HCC patients. Overexpression of LINC01146 inhibited the proliferation, migration, and invasion, while promoting the apoptosis of HCC cells in vitro. On the contrary, downregulation of LINC01146 exerted the opposite effects on HCC cells in vitro. In addition, overexpression of LINC01146 significantly inhibited tumor growth, while downregulation of LINC01146 promoted tumor growth in vivo. Furthermore, the co-expression genes of LINC01146 were mainly involved in the “metabolic pathway” and “complement and coagulation cascade pathway”. ConclusionLINC01146 expression was found to be decreased in HCC tissues and associated with the prognosis of HCC patients. It may serve as a cancer suppressor and prognostic biomarker in HCC.


Author(s):  
Guoliang Ma ◽  
Lulu Yang ◽  
Jing Dong ◽  
Lili Zhang

Background : Mounting evidence has shown that Cyclin E1 (CCNE1) facilitates various carcinoma progression, but its function in lung adenocarcinoma (LUAD) remains unclear. Objective: Our study aims to explore the significance of CCNE1 in clinical progression and study its biological functions in LUAD. Methods: CCNE1 expressions in LUAD specimens and cells were detected through quantitative realtime polymerase chain reaction (qRT-RCR) and western blot. An immunohistochemistry technique was used to detect CCNE1 expression to explore its association with clinical parameters. The LUAD cells with stable knockdown of CCNE1 were constructed by small interfering RNA. The effect of CCNE1 on LUAD cells proliferation and apoptosis was evaluated through Cell Counting Kit-8 (CCK-8), colony formation, and Annexin V/propidium iodide (AV-PI) assays, respectively. The cell migration and invasion were evaluated by Wound-healing and Transwell assays, respectively. The xenograft and lung metastasis mouse models were introduced to analyze how CCNE1 knockdown affects tumor growth and tumor metastasis. Results: CCNE1 expression was upregulated in LUAD tissue and cells. CCNE1 knockdown inhibited LUAD cellular malignant behavior in vitro and reduced tumor growth and metastasis in vivo. High expression of CCNE1 was correlated with big tumor size, cancer stage, lymph node metastasis, and poor prognosis. Conclusions: CCNE1 overexpression promotes LUAD growth, metastasis, and forebode poor prognosis: it can serve as a new prognostic marker of LUAD.


2020 ◽  
Vol 401 (3) ◽  
pp. 407-416 ◽  
Author(s):  
Libin Zhang ◽  
Jing Hu ◽  
Menghui Hao ◽  
Liang Bu

AbstractLong noncoding RNA 01296 (Lnc01296) is dysregulated in malignant tumors. However, the detailed effect of Linc01296 on hepatocellular carcinoma (HCC) remains largely unknown. In this study, we identified the biological role of Linc01296 in HCC. The levels of Linc01296 in HCC tissues and a panel of cell lines were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of Linc01296 on HCC progression were explored using a Cell Counting Kit-8 (CCK-8), flow cytometry, migration and Transwell invasion assays. The interactions among Linc01296, miR-26a and PTEN were determined using luciferase, RNA immunoprecipitation (RIP) and Western blot assays. Tumor xenograft models were utilized to confirm the in vivo functional roles of Linc01296 in HCC development. Linc01296 expression was increased in both HCC tissue samples and cell lines. Knockdown of Linc01296 suppressed HCC cell processes, such as proliferation, migration and invasion, and enhanced apoptosis in vitro; these effects were reversed by a miR-26a mimic or PTEN overexpression. Furthermore, knockdown of Linc01296 suppressed HCC growth in vivo. These findings indicated that Linc01296 is involved in HCC progression via regulating miR-26a/PTEN.


2019 ◽  
Vol 11 ◽  
pp. 175883591987465 ◽  
Author(s):  
Lin-Lin Wang ◽  
Lei Zhang ◽  
Xiao-Feng Cui

Background: Accumulating evidence has highlighted the crucial role of long noncoding RNAs (lncRNAs) in the tumorigenesis of gastric cancer (GC), which is the most common gastrointestinal malignancy. The present study aimed to identify the capacity of lncRNA LINC01419 (LINC01419) in GC progression, with the potential mechanism explored. Methods: Highly expressed lncRNAs were identified by in silico analysis, with the LINC01419 expression in GC tissues measured using reverse transcription-quantitative PCR (RT-qPCR). The GC cells were subsequently transfected with siRNA against LINC01419 or Rapamycin (the inhibitor of the mTOR pathway), or both, in order to measure cell migration and invasion in vitro as well as tumor growth and metastasis in vivo. Moreover, the expression of PI3K/Akt1/mTOR pathway-associated factors was determined. Results: LINC01419, highly expressed in GC samples of the Gene Expression Omnibus database, was observed to be markedly upregulated in GC tissues. Moreover, LINC01419 silencing, or PI3K/Akt1/mTOR pathway inhibition, exhibited an inhibitory role in GC cell migration and invasion in vitro, coupled with promoted cell autophagy in vitro, and inhibited tumor growth and metastasis in vivo. It was also revealed that LINC01419 silencing blocked the PI3K/Akt1/mTOR pathway, as proved by decreased extents of Akt1 and mTOR phosphorylation. Conclusions: In conclusion, LINC01419 inhibition may suppress GC cell invasion and migration, and promote autophagy via inhibition of the PI3K/Akt1/mTOR pathway. This provides significant theoretical basis and possibilities for further elucidation of the molecular mechanism of GC and finding new molecular-targeted therapeutic regimens.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document