scholarly journals Phylogeography of Nasutitermes ephratae (Termitidae: Nasutitermitinae) in Neotropical region

Author(s):  
Amanda de Faria Santos ◽  
Eliana Marques Cancello ◽  
Adriana Coletto Morales

Abstract The neotropical region ranks third in the number of termites with five different families. Of these, Termitidae is the most diverse and includes the species Nasutitermes ephratae and is common in the neotropics. To date, only one study has been published about phylogeographic issues in neotropical termites (N. corniger). Here, we aimed to investigate and analyze the population genetic patterns of N. ephratae and then evaluated the phylogeographical processes involved in the evolutionary history of the species. We used the mitochondrial genes 16S rRNA and COII as molecular markers: These were sequenced for 128 samples of N. ephratae. We estimated the genetic diversity and divergence time as well as the demographic and genetic structure analyses. We also produced ancestral area reconstruction and a haplotype network. The results showed high genetic variability, recent demographic expansion, and strong genetic structure. We also inferred a dispersal route for the species that occurred in both directions between South and Central America. The results emphasize a temporary separation between the South and Central America population that affected the origin of the current Central America populations. These were formed form different phylogeographic histories.

2019 ◽  
Author(s):  
Tao Pan ◽  
Guiyou Wu ◽  
Xing Kang ◽  
Peng Yan ◽  
Izaz Ali ◽  
...  

Abstract Background Species are the cornerstone in many domains of biology research, which made the accurate species delimitation became critically important. In this study, the systematics and biogeography of the Hyla chinensis -group were analyzed based on phylogeny, species delimitation and ancestral area reconstruction methods.Results The phylogenetic results showed six specific clusters existed in the H. chinensis- group. BPP analysis indicated that six distinct species exist due to the high probability values (>0.95), which were also supported by the BF analysis. The divergence time of the H. chinensis -group is estimated to date back to 18.84 Mya in the early Miocene. Combining the results of ancestral area reconstruction, the H. chinensis -group might have originated from Guangxi-Hainan, then spread eastwardly and reached Nanling mountains, Wuyi mountains, Huangshan mountains and Taiwan. In rightabout colonization, it is gradually extended to the Yunnan-Guizhou Plateau, Sichuan basin, Qinling mountains and Dabie mountains. Considering the geological movement from early Miocene to Pliocene, the colonization pattern of the H. chinensis -group maybe closely related to the progressive uplift of Qinghai-Tibetan Plateau (QTP) and historical climate change.Conclusions Our study provides evidence for species delimitation and speciation process within the H. chinensis -group. Our study supports the hypothesis that the evolutionary divergence in this species group was a consequence of the progressive uplift of QTP and environmental change.


2011 ◽  
Vol 102 (3) ◽  
pp. 333-343 ◽  
Author(s):  
K.C. Albernaz ◽  
K.L. Silva-Brandão ◽  
P. Fresia ◽  
F.L. Cônsoli ◽  
C. Omoto

AbstractIntra- and inter-population genetic variability and the demographic history of Heliothis virescens (F.) populations were evaluated by using mtDNA markers (coxI, coxII and nad6) with samples from the major cotton- and soybean-producing regions in Brazil in the growing seasons 2007/08, 2008/09 and 2009/10. AMOVA indicated low and non-significant genetic structure, regardless of geographical scale, growing season or crop, with most of genetic variation occurring within populations. Clustering analyzes also indicated low genetic differentiation. The haplotype network obtained with combined datasets resulted in 35 haplotypes, with 28 exclusive occurrences, four of them sampled only from soybean fields. The minimum spanning network showed star-shaped structures typical of populations that underwent a recent demographic expansion. The recent expansion was supported by other demographic analyzes, such as the Bayesian skyline plot, the unimodal distribution of paired differences among mitochondrial sequences, and negative and significant values of neutrality tests for the Tajima's D and Fu's FS parameters. In addition, high values of haplotype diversity (Ĥ) and low values of nucleotide diversity (π), combined with a high number of low frequency haplotypes and values of θπ<θW, suggested a recent demographic expansion of H. virescens populations in Brazil. This demographic event could be responsible for the low genetic structure currently found; however, haplotypes present uniquely at the same geographic regions and from one specific host plant suggest an initial differentiation among H. virescens populations within Brazil.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6115 ◽  
Author(s):  
Angela M. Mendoza ◽  
Wilmar Bolívar-García ◽  
Ella Vázquez-Domínguez ◽  
Roberto Ibáñez ◽  
Gabriela Parra Olea

The complex geological history of Central America has been useful for understanding the processes influencing the distribution and diversity of multiple groups of organisms. Anurans are an excellent choice for such studies because they typically exhibit site fidelity and reduced movement. The objective of this work was to identify the impact of recognized geographic barriers on the genetic structure, phylogeographic patterns and divergence times of a wide-ranging amphibian species,Hyalinobatrachium fleischmanni. We amplified three mitochondrial regions, two coding (COI and ND1) and one ribosomal (16S), in samples collected from the coasts of Veracruz and Guerrero in Mexico to the humid forests of Chocó in Ecuador. We examined the biogeographic history of the species through spatial clustering analyses (Geneland and sPCA), Bayesian and maximum likelihood reconstructions, and spatiotemporal diffusion analysis. Our data suggest a Central American origin ofH. fleischmanniand two posterior independent dispersals towards North and South American regions. The first clade comprises individuals from Colombia, Ecuador, Panama and the sister speciesHyalinobatrachium tatayoi; this clade shows little structure, despite the presence of the Andes mountain range and the long distances between sampling sites. The second clade consists of individuals from Costa Rica, Nicaragua, and eastern Honduras with no apparent structure. The third clade includes individuals from western Honduras, Guatemala, and Mexico and displays deep population structure. Herein, we synthesize the impact of known geographic areas that act as barriers to glassfrog dispersal and demonstrated their effect of differentiatingH. fleischmanniinto three markedly isolated clades. The observed genetic structure is associated with an initial dispersal event from Central America followed by vicariance that likely occurred during the Pliocene. The southern samples are characterized by a very recent population expansion, likely related to sea-level and climatic oscillations during the Pleistocene, whereas the structure of the northern clade has probably been driven by dispersal through the Isthmus of Tehuantepec and isolation by the Motagua–Polochic–Jocotán fault system and the Mexican highlands.


2016 ◽  
Vol 29 (3) ◽  
pp. 176 ◽  
Author(s):  
Alexander N. Schmidt-Lebuhn ◽  
Kiarrah J. Smith

Present patterns of diversity in the Australian flora have been shaped by increasing seasonality since the Eocene, and by pronounced aridification in the past 3 million years. Arid-zone plants are commonly hypothesised to be the products of radiations of ancestrally temperate or coastal lineages, as in the case of the everlasting paper daisy tribe Gnaphalieae (Asteraceae). However, these inferences are often based on higher-level phylogenies, whereas evolutionary processes in the Australian Gnaphalieae have rarely been studied at the species level. Here, we reconstructed the phylogeny and biogeographic history of the small, but ecologically diverse, paper daisy genus Leucochrysum, to examine recent habitat shifts and character changes, at the same time exploring the feasibility of using amplicon sequencing of low-copy nuclear gene regions to resolve phylogenetic relationships in Australian Gnaphalieae. On the balance of evidence, outgroup comparison and ancestral-area reconstruction support an ancestral range in the arid zone with subsequent diversification towards the south-east, demonstrating a complex evolutionary history with a re-colonisation of temperate areas. Low amplification success rates suggest that methods other than amplicon sequencing of currently available primers will be more promising for molecular phylogenetic work at a larger scale.


2020 ◽  
Author(s):  
Elliot M. Gardner ◽  
Lauren Audi ◽  
Qian Zhang ◽  
Hervé Sauquet ◽  
Alexandre K. Monro ◽  
...  

AbstractWe present a phylogenomic study of Brosimum and the allied genera Trymatococcus and Helianthostylis, with near-complete taxon sampling. Distributed from Mexico and the Greater Antilles to the Amazon, this clade contains the underutilized crop ramón (bread nut) (Brosimum alicastrum) as well as other species valued for timber or medicinal uses. Target enrichment for 333 genes produced a well-resolved phylogenetic tree and showed that Trymatoccocus and Helianthostylis are nested within Brosimum. We present a revised subgeneric classification of Brosimum based on phylogenetic and morphological considerations, including the reduction of Trymatococcus and Helianthostylis to subgenera. The monophyletic subgenera can be diagnosed based on stipule, pistillode, and cotyledon synapomorphies. Divergence date estimates suggest a Miocene origin for Brosimum, and ancestral area reconstruction indicated that all four subgenera originated and initially diversified in Amazonia before dispersing into other parts of South and Central America.ResumenPresentamos un estudio filogenómico del género Brosimum y sus aliados, Trymatococcus y Helianthostylis, y que incluye prácticamente todas las especies descritas. Su distribución va desde México y las Antillas Mayores hasta el Amazonas y comprende especies como el ramón (B. alicastrum), un cultivo infrautilizado, y otras especies empleadas como madera o en medicina. La secuenciación masiva dirigida de 333 marcadores nucleares de copia única permitió la reconstrucción de una filogenia bien resuelta, en la que se demuestra que Trymatococcus y Helianthostylis están anidados en Brosimum. Presentamos, por lo tanto, una clasificación revisada a nivel de especies, teniendo en cuenta los resultados moleculares y las características morfológicas, y donde Trymatococcus y Helianthostylis pasan a ser subgéneros de Brosimum. Estos subgéneros monofiléticos pueden ser identificados por caracteres de las estípulas y de los pistilodios.


2017 ◽  
Author(s):  
Yeşerin Yıldırım ◽  
Marti J. Anderson ◽  
Selina Patel ◽  
Craig D. Millar ◽  
Paul B. Rainey

AbstractPleurobranchaea maculatais a rarely studied species of the Heterobranchia found throughout the south and western Pacific – and recently recorded in Argentina – whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history ofP. maculatapopulations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and theCOIandCytBregions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence from Argentinian sea slugs did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.


2013 ◽  
Vol 79 (3) ◽  
pp. 311-324 ◽  
Author(s):  
Tania Anaid Gutiérrez-García ◽  
Ella Vázquez-Domínguez

AbstractResults from genetic and geologic studies can be combined to elucidate some general patterns of the biogeographic and evolutionary history of Central America (CA) and of its biota. Based on an ample review of geologic, biogeographic and genetic studies, our aim was to examine how common genetic patterns can be linked with geologic processes. Considering information about geologic and tectonic evolution of CA, we subdivided the region into four tectonic blocks: Maya, Chortis, Chorotega and Chocó. Species exchange between North/South America and CA encompasses three events: a first migration during the Late Cretaceous–Early Paleocene, a second through a terrestrial corridor preceding the formation of the Isthmus of Panama (IP), and the third involving a major dispersion through the IP. Such events caused similar genetic differentiation patterns and left a signature on the diversification of extant taxa, which we propose as three evolutionary groups: 1) Mayan, characterized by marked genetic structure and divergence, multiple refugia and formation of cryptic species; 2) Mid-CA, defined by high differentiation at the population level and between highland and lowlands, associated with intense volcanic activity; 3) Panamian, distinguished by migration from north to south and vice versa via de IP, with markedly high species divergence and speciation.


Parasitology ◽  
2018 ◽  
Vol 146 (3) ◽  
pp. 356-362 ◽  
Author(s):  
Brenda Solórzano García ◽  
Amanda D. Melin ◽  
Filippo Aureli ◽  
Gerardo Pérez Ponce de León

AbstractPatterns of genetic variation among populations can reveal the evolutionary history of species. Pinworm parasites are highly host specific and form strong co-evolutionary associations with their primate hosts. Here, we describe the genetic variation observed in four Trypanoxyuris species infecting different howler and spider monkey subspecies in Central America to determine if historical dispersal processes and speciation in the host could explain the genetic patterns observed in the parasites. Mitochondrial (cox1) and ribosomal (28S) DNA were analysed to assess genetic divergence and phylogenetic history of these parasites. Sequences of the 28S gene were identical within pinworms species regardless of host subspecies. However, phylogenetic analyses, haplotype relationships and genetic divergence with cox1 showed differentiation between pinworm populations according to host subspecies in three of the four Trypanoxyuris species analysed. Haplotype separation between host subspecies was not observed in Trypanoxyuris minutus, nor in Trypanoxyuris atelis from Ateles geoffoyi vellerosus and Ateles geoffoyi yucatanensis. Levels of genetic diversity and divergence in these parasites relate with such estimates reported for their hosts. This study shows how genetic patterns uncovered in parasitic organisms can reflect the host phylogenetic and biogeographic histories.


2016 ◽  
Vol 14 (06) ◽  
pp. 1660001 ◽  
Author(s):  
Ruchishree Konhar ◽  
Manish Debnath ◽  
Jean Valrie Marbaniang ◽  
Devendra Kumar Biswal ◽  
Pramod Tandon

Intercontinental dislocations between tropical regions harboring two-thirds of the flowering plants have always drawn attention from taxonomists and biogeographers. One such family belonging to angiosperms is Orchidaceae with an herbaceous habit and high species diversity in the tropics. Here, we investigate the evolutionary and biogeographical history of the genus Cymbidium, which represents a monophyletic subfamily (Epidendroideae) of the orchids and comprises 50 odd species that are distinctly distributed in tropical to temperate regions. Much is not known about correlations among the level of CAM activity (one of the photosynthetic pathways often regarded as an adaptation to water stress in land plants), habitat, life forms, and phylogenetic relationships of orchids from an evolutionary perspective. A relatively well-resolved and highly supported phylogeny for Cymbidium orchids is reconstructed based on sequence analysis of ITS2 and matK regions from the chloroplast DNA available in public repositories viz. GenBank at NCBI. This study examines a genus level analysis by integrating different molecular matrices to existing fossil data on orchids in a molecular Bayesian relaxed clock employed in BEAST and assessed divergence times for the genus Cymbidium with a focus on evolutionary history of photosynthetic characters. Our study has enabled age estimations (45Ma) as well as ancestral area reconstruction for the genus Cymbidium using BEAST by addition of previously analyzed two internal calibration points.


Sign in / Sign up

Export Citation Format

Share Document